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1 Introduction

Sea level rise is a major threat to economic development. Nearly one billion

people live in low-elevation coastal zones with direct exposure to coastal catastrophe

(IPCC 2019). This threat is growing quickly in Asia, where land subsidence greatly

accelerates the experience of sea level rise (Tay et al. 2022). Particularly vulnerable

are the 32 million residents of Jakarta, a megacity on pace to be the world’s most

populous by 2030 (Euromonitor 2018).

Jakarta faces frequent flooding with $300 million in annual damages, which will

only worsen as sea levels continue to rise (Budiyono et al. 2015). The Indonesian

government has responded with a proposed sea wall at up to $60 billion in cost.

I study how government intervention complicates long-run adaptation by creating

moral hazard. The government tends to protect coastal development ex post despite

not wanting to ex ante, inducing over-development that forces protection. The gov-

ernment thus faces a commitment problem, and indeed the seminal work of Kydland

and Prescott (1977) mentions flood protection as a supporting example. I formalize

the commitment problem in the context of sea level rise, and I show how it limits

adaptation over time by generating coastal lock-in.

I begin by documenting how development responded to historical intervention in

Jakarta. I study the West Flood Canal, which was completed in 1918, and I measure

historical land development by digitizing Dutch colonial maps from 1887 to 1945.

The canal diverts a major river around the city center, protecting areas to its north

but not to its south. Thus, while the north and south were similar before the canal,

the north experienced less flooding after the canal’s completion. I apply a spatial

regression discontinuity design at the canal boundary in the spirit of Almond et al.

(2009), and I find that intervention increased development.

I study how this response creates a commitment problem for government inter-

vention, focusing on Jakarta’s planned sea wall. I do so quantitatively by combining

a dynamic spatial model of urban development with a hydrological model of flood-

ing. Developers and residents make investment and location decisions with flooding

in mind. Residential demand is spatial, as individuals make location decisions over
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where to live. Developer supply is dynamic, as forward-looking developers make sunk

investment decisions in immobile buildings. Equilibrium rents clear markets for de-

velopment, equalizing residential demand and developer supply in each period. The

government intervenes with a sea wall, which reduces flooding at the coast.

Estimation leverages granular data on developers, residents, and flooding. I

estimate residential demand by matching the spatial distribution of population in

2015. I address the endogeneity of rents by instrumenting with ruggedness as a

supply shifter. I estimate developer supply by matching the spatial distribution of

new construction between 2015 and 2020. Estimation reads continuation values from

data on market prices in the style of Kalouptsidi (2014). If markets are efficient,

then property prices capture the stream of rents from developed buildings, and land

prices capture the option value of undeveloped land. Prices thus reflect continuation

values, inclusive of expectations over future flooding and intervention. I address the

endogeneity of prices by instrumenting with residential amenities as demand shifters.

Both demand and supply estimation boil down to simple linear regressions. Finally, I

follow the frontier of the hydrological literature in training a machine-learning model

with monthly, tract-level data on flooding from 2013 to 2020. A histogram gradient

boosting decision tree fits the data well and offers sensible predictions for how sea

wall construction decreases flooding across space.

Counterfactuals show that commitment facilitates adaptation. I define com-

mitment as long-run planning for coastal defense, followed by adherence to the plan.

Coastal regulation is equivalent if followed by enforcement. Full commitment achieves

the first best – gradual managed retreat – with short-run costs but long-run gains.

Non-commitment creates moral hazard and lock-in, consistent with coastal persis-

tence to date (Kocornik-Mina et al. 2020). Relative to the first best, new coastal

development is twice as high in 2100 and three times as high in 2200, despite the

threat of sea level rise. The resulting welfare losses are meaningful at roughly $15B.

Moral hazard also rationalizes the incomplete capitalization of flooding into real

estate prices, as others have documented (Hino and Burke 2021, Bakkensen and

Barrage 2022, Gourevitch et al. 2023). Real estate prices reflect private costs, but

moral hazard forces defense at public cost. That is, real estate prices are not social

welfare and need not capture flooding, even with perfect information about flooding.
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I show that model-implied prices under non-commitment match observed coastal land

prices in 2015, suggesting that moral hazard drives current development. Projecting

into the future, I find that moral hazard sustains high prices despite severe flooding

and socially costly defense. By contrast, it is challenging to match observed prices by

shutting down moral hazard and appealing to flood misperceptions alone.

I offer policy prescriptions for navigating moral hazard. Each cautions against

evaluating the sea wall in a vacuum, either only in the short term or only at the

coast. First, I recommend any feasible form of commitment. Limited commitment

over the short run and delayed commitment over future periods each reduce moral

hazard. Partial commitment is less effective than full commitment, but also less po-

litically challenging. Second, I recommend an integrated policy approach. Inland

investment lowers coastal demand, and managed aquifer recharge slows land subsi-

dence. Each complements sea wall construction by reducing moral hazard, as each

reduces the returns to forcing defense. Thus, integrated policy minimizes losses from

non-commitment in settings where commitment is difficult. Current efforts for a new

political capital are in line with this approach.

My main contribution is to quantify how endogenous government intervention

limits adaptation to sea level rise. Adaptation blunts the consequences of sea level

rise (Desmet et al. 2021, Castro-Vincenzi 2024, Balboni 2025, Gandhi et al. 2025) and

of climate change more broadly (Barreca et al. 2016, Costinot et al. 2016, Bilal and

Rossi-Hansberg 2023, Cruz and Rossi-Hansberg, Nath 2024). In particular, Desmet

et al. (2021) show that inland migration can greatly reduce damages from coastal

flooding. Government intervention complicates this narrative by displacing private

investment in self-protection (Peltzman 1975, Kousky et al. 2006, Boustan et al.

2012, Annan and Schlenker 2015, Kousky et al. 2018, Baylis and Boomhower 2022,

Fried 2022), creating moral hazard as in insurance markets (Coate 1995, Wagner

2022, Mulder 2024, Ostriker and Russo 2024). Endogenizing government intervention

exacerbates moral hazard, as intervention spurs coastal investment that forces further

intervention. The result is coastal lock-in at social cost, in contrast to the smooth

inland transition of Desmet et al. (2021).

Methodologically, I estimate a model of industry dynamics in the tradition of

Hopenhayn (1992) and Ericson and Pakes (1995), drawing on dynamic discrete choice

3



methods from Hotz and Miller (1993) and Arcidiacono and Miller (2011). I build on

Kalouptsidi (2014), which avoids computing continuation values for estimation by

reading these values from data. I show how this insight greatly simplifies estimation

of dynamic land use models with data generally available in urban settings, where

durable development generates important dynamics (Glaeser and Gyourko 2005, Mur-

phy 2018). My approach allows for straightforward estimation, transparent identi-

fication, and flexible expectations. In incorporating geography, I also complement

a growing literature that brings dynamics to spatial models (Desmet et al. 2018,

Caliendo et al. 2019, Kleinman et al. 2023).

Finally, I provide quantitative estimates and recommendations for Jakarta, draw-

ing on work in environmental studies that assesses current and future flood damages

(Budiyono et al. 2015, Andreas et al. 2018). Land subsidence in Jakarta effectively

accelerates sea level rise, bringing urgency to questions of adaptation and potentially

worsening existing inequality (Hsiao 2024c). The city foreshadows the future for most

coastal populations by century’s end, particularly as sea walls enter policy discussions

worldwide.1 Jakarta’s challenges are the world’s challenges.

2 Background

Flooding has long plagued Jakarta, which occupies a delta where thirteen rivers

meet the ocean. This nexus of waters both nurtures and menaces the city. Historical

records capture flooding as early as 1621, shortly after the Dutch East India Company

established its capital of Batavia at the north of the present-day city (Abeyasekere

1987). Figure 1 shows that widespread flooding persists today, with major incidents in

1996, 2002, 2007, 2013, and 2020. The key challenge has been fluvial (river) flooding

from extreme rainfall, and so historical efforts have focused on river infrastructure

that includes a westward canal (Westerse Vaart) in 1725, the West Flood Canal

(Banjir Kanal Barat) in 1918, and the East Flood Canal (Banjir Kanal Timur) in

2002 (Octavianti and Charles 2019). Each complements a broader system of drains,

1 China plans 15,000km of coastline sea wall, Japan has built 400km, and Miami plans 10km. The
Northern European Enclosure Dam project proposes dams from France to England and Scotland
to Norway. The BIG U and Embarcadero Seawall target Lower Manhattan and San Francisco.
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Figure 1: Flooding (2013-2020)

(a) Frequency (b) Depth

Source: Regional Disaster Management Agency (BPBD via data.jakarta.go.id). Frequency is average
months per year with flooding, and depth is average yearly flood depth. Each is by 300m cell.

pumps, reservoirs, and flood gates.

Coastal flooding adds significant additional risk in the coming decades. North

Jakarta faces near total submersion by 2050, as sea level rise combines with rapid land

subsidence. Official government plans describe scenarios of 3 to 5m of relative sea

level rise by 2050, resulting from global mean sea level rise of 8mm per year and local

land subsidence of 7 to 14cm per year (NCICD 2014). Groundwater extraction drives

subsidence. Piped surface water accounts for only half of total water consumption,

with the shortfall met by groundwater extraction that is largely unregistered and

unregulated (Taftazani et al. 2022). Water demand continues to rise with a growing

population, but surface water reserves remain fixed and undermined by pollution,

poor treatment, and limited piping infrastructure (Luo et al. 2019). Efforts to quell

subsidence thus face fundamental difficulties.

These existential threats to the nation’s capital have prompted two major gov-

ernment initiatives. Stakes are high in this context, as public funds involve forgone in-

vestment in areas like education with known aggregate benefits (Hsiao 2024b). First,

a sea wall has been in discussion since 2011. Proposals for this “Great Garuda

Project” have undergone several revisions, which vary in their scope and ambition.

The Jakarta Coastal Defense Strategy (JCDS) in 2011 became the National Capital
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Integrated Coastal Development Masterplan (NCICD) in 2014, with further updates

in 2016, and then the Integrated Flood Safety Plan (IFSP) in 2019. The latest in

2024 aims to protect North Java more broadly at costs of up to $60B (Kemenko

Perekonomian 2024).

Second, the government plans to establish a new political capital called Nusan-

tara, at once hedging against flood risk and relieving congestion in Jakarta. The

move to what is currently East Kalimantan province comes at a proposed cost of $32
billion, with inauguration initially slated for Indonesia’s national day on August 17,

2024. The government envisions a planned, modern city nestled in the forests of Bor-

neo, named in tribute to the ancestral word for the archipelago. Official goals include

employment of nearly five million and net-zero emissions by 2045 (IKN 2022).

3 Theory

I model coastal moral hazard in a minimal setting. The coast experiences flood-

ing, developers construct new buildings, and the government provides flood defense.

Moral hazard arises if developers do not internalize public costs and if the government

is time-inconsistent.

3.1 Example

I begin with a stylized example for intuition. The government can build a sea

wall to defend the coast at public cost e > 0. A continuum of developers can build

at the coast. Developers are small, identical, and independent with mass one. If

there is a sea wall, then buildings can be constructed at cost c > 0 and rented for

revenue r = c+ ϵ. All developers build, and they make small private profits ϵ > 0. If

instead there is no sea wall, then building is not profitable because flooded buildings

cannot be rented out. No developers build, and they make zero profits. Social welfare

includes private profits and public costs.

The government faces a commitment problem if r > e > ϵ. Before developers

have built, the government prefers ex ante not to build the sea wall. The sea wall

enables development for private profits ϵ < e, which do not exceed the public cost of
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the sea wall. But after developers have built, the government prefers ex post to build

the sea wall. Once the costs of development are sunk, the sea wall protects buildings

that generate rental revenues r > e, which exceed the public cost of the sea wall.

If the government has commitment power, then it can choose the ex-ante equilib-

rium: no sea wall and no coastal development. Individual developers do not deviate

because buildings are flooded without a sea wall, and the government does not de-

viate because a sea wall has no buildings to protect. This outcome is the first best,

and social welfare is zero.

If the government does not have commitment power, then developers can force

the ex-post equilibrium: a sea wall and full coastal development. This equilibrium is

one of coastal moral hazard. Individual developers do not deviate because building

behind the sea wall generates small private profits, and the government does not

deviate because the sea wall is statically optimal. But the sea wall is not dynamically

optimal: this outcome falls short of the first best, and social welfare is negative. Small

private profits do not justify large public costs.

Reality is less stylized. First, private profits may not be small. Indeed, while

sea walls are expensive, there are large returns to protecting existing megacities. If

private profits justify public costs, such that ϵ > e, then there is no commitment

problem. However, this intuition must contend with the option to move inland. If

doing so is costless over the long run, then the net gains from coastal entrenchment

are limited, and so ϵ will be small.2 Second, government intervention need not be

all or nothing. The practical first best is gradual managed retreat: a sea wall today

acknowledges short-run needs, while more limited intervention tomorrow enables long-

run adaptation. The point is that moral hazard encourages coastal construction and

slows inland migration. Expected public intervention crowds out private adaptation.

3.2 Development and defense

I formalize and generalize the example. Consider a flood-prone coastal location.

Development d and defense g generate private profits π(d, g) at public cost e(d, g).

2 Moreover, sea walls must be maintained and rebuilt at greater scale as sea levels rise. Repeated
intervention adds to the public costs of coastal entrenchment, increasing e relative to ϵ.
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Private profits include consumer surplus for residents and producer surplus for de-

velopers. Public costs include infrastructure for flood defense and aid for flooded

development. Social welfare w(d, g) is private profits net of public costs.

w(d, g) = π(d, g)− e(d, g)

Development and defense increase private profits and public costs. For private

profits, development creates buildings for residents to enjoy, and defense provides

protection from coastal flooding. For public costs, development increases the need for

aid, and defense incurs construction costs. That is, private profits and public costs

increase monotonically in (d, g). For d′ > d and g′ > g,

π(d′, g) > π(d, g), π(d, g′) > π(d, g),

e(d′, g) > e(d, g), e(d, g′) > e(d, g).

Development and defense are complements. Defense raises the marginal private

benefit of development by protecting new buildings from flooding. Defense also lowers

the marginal public cost of development by reducing the need for post-disaster aid.

That is, private profits have increasing differences in (d, g), while public costs have

decreasing differences. For d′ > d and g′ > g,

π(d′, g′)− π(d, g′) > π(d′, g)− π(d, g),

e(d′, g′)− e(d, g′) < e(d′, g)− e(d, g).

The timeline has three stages: (1) the government announces a plan, (2) de-

velopers proceed with development, and (3) the government proceeds with defense.

Development maximizes private profits under perfect competition, while defense max-

imizes social welfare. I compare outcomes to the first best, in which development and

defense jointly maximize social welfare. This first best is d̂∗ = d∗(ĝ∗) and ĝ∗ = g∗(d̂∗)

such that

d∗(g) = argmax
d

{
w(d, g)

}
, g∗(d) = argmax

g

{
w(d, g)

}
. (1)
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3.3 Moral hazard and commitment

Moral hazard leads to coastal entrenchment: over-development and over-defense

at the coast. The simple intuition is that developers do not internalize public costs,

and so they tend to over-develop relative to the first best. In turn, a time-inconsistent

government tends to respond with over-defense. The government can use policy

to counteract this tendency, but only if it has commitment power. I study four

commitment scenarios.

Strong commitment

The government can announce and commit to regulating development. If en-

forced, a tax τ = e(d, g) forces developers to internalize public costs. As in the first

best, the developer problem aligns with social welfare maximization. Equilibrium is

given by d̂C = dC(ĝC) and ĝC = gC(d̂C) such that

dC(g) = argmax
d

{
w(d, g)

}
, gC(d) = argmax

g

{
w(d, g)

}
. (2)

Commitment is difficult if the tax is politically costly ex post. After development is

sunk, the supply of development is perfectly inelastic. Thus, developers have strong

incentives to lobby against the tax, which becomes a pure transfer from developers

to the government. Moreover, the government has little benefit from the tax, which

does not improve social welfare as long as development is fixed. Commitment requires

resisting these static incentives not to enforce the tax.

Proposition 1. Strong commitment achieves the first best.

d̂∗ = d̂C , ĝ∗ = ĝC

Proof. Conditions 1 and 2 coincide.

Weak commitment

The government can announce and commit to limited defense. If the government

does not over-defend, then it forces developers not to over-develop. Development
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responds to defense. This indirect approach avoids the political complications of

directly regulating development, but it is also less effective. Equilibrium is given by

d̂c = dc(ĝc) and ĝc such that

dc(g) = argmax
d

{
π(d, g)

}
, ĝc = argmax

g

{
w(dc(g), g)

}
. (3)

Commitment remains difficult because defense is still beneficial ex post. Suppose

developers proceed with high levels of development. After development is sunk, the

government can improve social welfare by providing high levels of defense. Commit-

ment requires resisting this static incentive to deviate from the plan.

Lemma 1. For generalized w̃(d, g, θ) = π(d, g)− (1− θ)e(d, g), consider

d̃(g, θd) = argmax
d

{
w̃(d, g, θd)

}
, g̃(d, θg) = argmax

g

{
w̃(d, g, θg)

}
.

(i) d̃(g, θd) increases in g and θd, (ii) g̃(d, θg) increases in d and θg, (iii) the set of

fixed points is non-empty, and (iv) the highest and lowest fixed points increase in θd

and θg.

Proof. First, w̃(d, g, θ) has increasing differences in (d, g) given increasing differences

for π(d, g) and decreasing differences for e(d, g). Second, w̃(d, g, θ) has increasing

differences in (g, θ) because w̃(d, g′, θ′)− w̃(d, g, θ′) > w̃(d, g′, θ)− w̃(d, g, θ) simplifies

to (θ′ − θ)[e(d, g′)− e(d, g)] > 0 for g′ > g and θ′ > θ. This condition holds because

e(d, g) increases in g. Third, w̃(d, g, θ) has increasing differences in (d, θ) under an

analogous argument that holds because e(d, g) increases in d. By Topkis’s Mono-

tonicity Theorem, these increasing differences give (i) and (ii). Tarski’s Fixed Point

Theorem then gives (iii), and Milgrom and Roberts (1994) Theorem 4 gives (iv).

Proposition 2. Weak commitment leads to coastal entrenchment.

d̂c > d̂∗, ĝc > ĝ∗

Proof. Conditions 1 maximize the same objective, and so I can rewrite them as

d∗(g) = argmax
d

{
w(d, g)

}
, ĝ∗ = argmax

g

{
w(d∗(g), g)

}
.
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By lemma 1, g̃(d) increases in d for dc(g) > d∗(g), as d̃(g, θd) increases in θd for

dc(g) = d̃(g, 1) and d∗(g) = d̃(g, 0). So ĝc > ĝ∗. By lemma 1, d∗(g) = d̃(g, 0) increases

in g. Thus, d̂c = dc(ĝc) > d∗(ĝc) > d∗(ĝ∗) = d̂∗ given dc(g) > d∗(g). So d̂c > d̂∗.

Weak non-commitment

Developers can ignore the government’s announcement and proceed to over-

develop. If the government cannot commit, then its announcement is not credible.

Equilibrium is given by d̂n = dn(ĝn) and ĝn = gn(d̂n) such that

dn(g) = argmax
d

{
π(d, g)

}
, gn(d) = argmax

g

{
w(d, g)

}
. (4)

Indeed, after development is sunk, the government finds it difficult to enforce regula-

tion or to limit defense. Defense responds to development. Static incentives prevail.

Proposition 3. Weak non-commitment worsens coastal entrenchment.

d̂n > d̂c, ĝn > ĝc

Proof. Consider (d̂∗, ĝ∗), where w(d̂∗, ĝ∗) > w(d̂n, ĝn) by definition. By lemma 1,

d̂∗ < d̂n and ĝ∗ < ĝn because these equilibria increase in θd, where (d̂∗, ĝ∗) corresponds

to (θd, θg) = (0, 0) and (d̂n, ĝn) corresponds to (θd, θg) = (1, 0). That is, decreasing

d and g relative to (d̂n, ĝn) improves social welfare. With weak commitment, the

government can move in this direction by decreasing g relative to ĝn. By lemma 1,

developers respond by decreasing d relative to d̂n because dc(g) = dn(g) = d̃(g, 1)

increases in g. So ĝc < ĝn. Thus, d̂c = dc(ĝc) < dn(ĝn) = d̂n. So d̂c < d̂n.

Strong non-commitment

The government can itself encourage over-development. Suppose a current gov-

ernment pursues private profit maximization for political gain, adopting lax regulation

that spurs development while not internalizing public costs. A future government is

left to provide defense and pay the costs. If the current government over-develops,

then it forces the future government to over-defend, as defense responds to develop-
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ment. Equilibrium is given by d̂N and ĝN = gN(d̂N) such that

d̂N = argmax
d

{
π(d, gN(d))

}
, gN(d) = argmax

g

{
w(d, g)

}
. (5)

Indeed, the future government cannot regulate the current government, which has

since left office. Furthermore, the future government finds it statically optimal to

provide defense after development is sunk. This tension between current and future

governments relates to concerns of “odious debt” (Jayachandran and Kremer 2006).

I can similarly frame tensions between local and national governments or between na-

tional governments and international aid. Developer associations may also coordinate

to wield their aggregate influence over defense.3

Proposition 4. Strong non-commitment greatly worsens coastal entrenchment.

d̂N > d̂n, ĝN > ĝn

Proof. In contrast to social welfare maximization in the first best, private profit max-

imization gives d̂π = dπ(ĝπ) and ĝπ = gπ(d̂π) such that

dπ(g) = argmax
d

{
π(d, g)

}
, gπ(d) = argmax

g

{
π(d, g)

}
.

By definition, π(d̂π, ĝπ) > π(d̂n, ĝn). By lemma 1, d̂π > d̂n and ĝπ > ĝn because these

equilibria increase in θg, where (d̂π, ĝπ) corresponds to (θd, θg) = (1, 1) and (d̂n, ĝn)

corresponds to (θd, θg) = (1, 0). That is, increasing d and g relative to (d̂n, ĝn) im-

proves private profits. With strong non-commitment, the current government can

move in this direction by increasing d relative to d̂n. By lemma 1, the future gov-

ernment responds by increasing g relative to ĝn because gN(d) = gn(d) = g̃(d, 0)

increases in d. So d̂N > d̂n. Thus, ĝN = gN(d̂N) > gn(d̂n) = ĝn. So ĝN > ĝn.

3.4 Discussion

Moral hazard generates coastal lock-in at high public cost. Global mean sea

level rise projections reach as high as 1m in 2100 and 2m in 2150 under SSP5-8.5

3 Without government or developer association coordination, moral hazard is restricted to weak
non-commitment. Small developers do not internalize their individual influence over defense.
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(Fox-Kemper et al. 2021), and local land subsidence will lead to even worse scenarios

for many large coastal cities, particularly in Asia (Tay et al. 2022). Gradual inland

retreat, as Desmet et al. (2021) envision, calls for declining coastal development given

growing long-run risk. But reality is one of coastal persistence and even intensifica-

tion (Kocornik-Mina et al. 2020). Moral hazard leads to coastal entrenchment that

attracts coastal residents, slows inland migration, and lowers the incentives for inland

development.4 The consequence is continued spending on coastal defense and large

damages should it fail.

I note comparisons to moral hazard in the insurance setting. First, the typical

challenge is hidden action. The principal cannot control risk-taking by the agent

because this risk-taking is unobserved. Here, the challenge is time inconsistency. The

government defends the coast not because development is hidden, but rather because

it is ex-post optimal to do so after development is sunk. Second, the typical distortion

is uninternalized risk, such that protection leads to excessive risk-taking. Here, the

distortion is amplified. Risk-taking itself prompts further protection, thereby creating

a feedback loop. Defense encourages development, which forces added defense.

I also clarify the conditions for moral hazard. The monotone comparative statics

analysis shows that these conditions do not include continuity or differentiability. Sea

wall construction can be a discrete choice, as in the example. However, moral hazard

is eliminated at several extremes. First, there is no moral hazard if defense is entirely

infeasible. But international aid may bolster capacity to defend, and indeed plans for

Jakarta draw in part on Dutch expertise. Second, there is no moral hazard if defense

is costless. But sea walls are large-scale undertakings, which must reach far above

sea level to minimize overtopping risk during storm surges. Third, there is no moral

hazard if there is no private adaptation to crowd out. Coastal defense is necessary

when there is no scope for inland retreat. Disaster relief is necessary when vulnerable

populations lack other means to adapt.

Finally, I discuss alternative solutions beyond strong commitment. First, coastal

taxes or quotas can minimize moral hazard. Both still require commitment to en-

4 In the baseline model with one location, coastal entrenchment is at the implicit expense of other
locations. Appendix A uses two locations to show explicitly that coastal defense crowds out inland
development. It also shows that public defense crowds out private defense more broadly.
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forcement, which can be undercut by lobbying. Second, local governments might

rely on local financing, such that defense today must eventually be recovered through

higher taxes. But cost-sharing is common in practice. National ministries have led

sea wall planning for Jakarta and contributed funding for initial construction.5 Third,

mandated insurance is difficult because coastal flooding is an aggregate risk. Zurich

does not want to pool with Jakarta, which floods every year. If insurance is fairly

priced, then the premium amounts to a large tax that invites lobbying. If insurance is

subsidized, then the subsidy gives rise to moral hazard. Fourth, Coasian bargaining

may allow inland stakeholders to pay to avoid coastal entrenchment. But inland in-

terests are diffuse relative to coastal interests, and the transfers involved may be too

large to be politically feasible. Given these challenges, the empirical analysis focuses

instead on assessing variations of partial commitment.

4 Empirics

The theory frames the empirics. I compile data on development, defense, and

flooding, and I show how development responded to historical flood defense.

4.1 Data

I compile high-resolution spatial data on building construction, populations,

property prices, land prices, and flooding across Jakarta. The city is divided into

five districts (kota), 44 sub-districts (kecamatan), 267 neighborhoods (kelurahan),

and 2,722 tracts (rukun warga), with each tract containing around 4,000 people. I

compile data by 300m cell, or roughly three times finer than tract level. I focus on

Jakarta proper, but the empirical analysis will allow for movement across the broader

metropolitan area. I exclude the islands of Kepulauan Seribu district. Figure 2 illus-

trates the data, and appendix B provides additional detail.

The Global Human Settlement Layer measures building construction and pop-

ulations across Jakarta (GHSL 2022). It does so by 100m cell every five years from

5 Initial proposals for funding are 64% federal and 36% local (Kemenko Perekonomian 2024). Be-
yond Jakarta, New York City sea wall funding is 65% federal, 35% state, and 0% municipal
(USACE 2022). Even with local financing, inland taxpayers cross-subsidize coastal beneficiaries.
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Figure 2: Data (2015)

(a) Building construction (b) Population

(c) Property prices (d) Land prices

Building construction and populations come from the Global Human Settlement Layer. I construct
property prices with transactions and listings data from 99.co and brickz.id. Land prices come from
the Smart City initiative of the Jakarta city government. Each figure displays data by 300m cell.

1975 to 2020, and I aggregate to the 300m cell level. The construction data record

built-up surface areas and volumes, separating residential from non-residential con-

struction. I verify the 2015 measures by comparing them to 2015 data from Visicom,

a provider of satellite-derived 3D maps that capture building heights at the 1m pixel

level. When aggregated by tract, the correlation between the datasets exceeds 0.90.

The population data are downscaled from regional administrative data based on the

distribution and density of residential buildings, as measured in the construction
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data. This approach assumes that residents occupy development, consistent with my

empirical model in which rents clear markets for development in equilibrium.

I construct property prices for 2015 with data on transactions and listings from

two major real estate websites, 99.co and brickz.id, covering both residential and non-

residential properties. From 99.co, I scrape and successfully geocode 56,222 listings

with prices and floor spaces for October 2022. I compute average property prices

by 300m cell. From brickz.id, I obtain 6,929 property transactions for 2015. I use

these data to backcast the 2022 prices and to adjust for differences between listed and

transacted prices. I thus obtain transacted property prices for 2015, where property

prices combine building and land values.

Land prices for 2015 come from the Jakarta Smart City initiative, through which

the city government and the National Land Agency (Badan Pertanahan Nasional)

sought to update property tax appraisals and improve collections. They did so by

computing land prices at a granular level, drawing on administrative data from trans-

actions, market data from brokers and online platforms, and property characteristics

from field visits.6 The data include 20,892 observations at the sub-block level, with

land prices measured as prices per square meter. I aggregate to the 300m cell level.

Harari and Wong (2024) describe these data in further detail and take additional

steps to verify their quality, including in informal areas. Moreover, the use of these

values for tax collection gives them official weight.

Flooding data from 2013 to 2020 come from the Regional Disaster Management

Agency. For each month, I observe the tracts that experienced flooding, the depth

and duration of flooding, and the number of people affected. I downscale these data

to the 300m cell level, and I compute measures of flood frequency and depth. I do so

by cell as follows. For flood frequency, I count the number of months each year with

flooding, then I average across years. For flood depth, I sum over monthly measures

each year, then I average across years. Figure 1 maps these frequencies and depths.

I also measure ruggedness and residential amenities with city government data

(Jakarta 2022). Ruggedness is the topographic ruggedness index (Riley et al. 1999),

and I use digital elevation model data at the 30m level to compute the mean difference

6 The government data do not include official property values, which I must construct separately.
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Figure 3: Land development and the West Flood Canal

(a) Before (1910)
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(b) After (1945)
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Data on historical land development come from Dutch colonial maps. The West Flood Canal was
completed in 1918 and protected neighborhoods to its north (positive distances), but not to its south
(negative distances). Each observation is a 100m cell. The x-axis measures distance to the West
Flood Canal in meters, and 500m is the optimal bandwidth.

in elevation between a cell and its surrounding cells. Residential amenities measure

proximity to schools, health clinics, and passenger rail stations. I compute Euclidean

distances to the closest point in each category, sum with equal weighting, and take

the negative to reflect proximity. Ruggedness provides a supply shifter in estimating

demand, and residential amenities provide demand shifters in estimating supply.

4.2 Historical flood defense

I consider whether historical investments in flood protection led to higher levels of

land development. The opening of the West Flood Canal in 1918 allows me to study

this dynamic over the last century, with historical maps from the Dutch colonial

era providing measures of land development both before and after the construction

of the canal. I georeference eight maps that cover the period from 1887 to 1945

in six- to eight-year intervals. I digitize them to construct a panel that records,

over time, whether each 50m cell contains developed or undeveloped land. I then

aggregate to the 100m cell by counting the developed 50m cells within each 100m

cell. This aggregation allows me to accommodate misalignment over time, which

otherwise introduces conflicting measures of development from year to year.
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The West Flood Canal diverts floodwaters that flow from the higher-elevation

south to the lower-elevation north, protecting neighborhoods north of the canal but

not those south of the canal. In the spirit of Almond et al. (2009), I leverage this

spatial discontinuity to study how land development responds to flood protection. I

restrict attention to cells in the vicinity of the canal, and I plot land development

relative to distance to the canal. I find that defense encourages development. In figure

3, land development jumps at the boundary after the opening of the canal, but not

before, as development responds positively to increased flood protection. Appendix

B shows regression estimates by year, and it documents decreased flooding north of

the boundary, smoothness in elevation across the boundary, and smoothness in land

development across the boundary throughout the pre-canal period.

5 Demand

Residents determine the demand for development, choosing locations with flood-

ing in mind. Estimation matches location choices.

5.1 Model

Residents are renters that make static location choices over space. Individuals

i choose locations k to maximize residential utility, which is given by representative

utility vk and logit shocks ϵik.

U = max
k

{vk + ϵik} for vk = αrk + ϕfk + xkγ + εk (6)

Representative utility depends on rents rk, flooding fk, observed amenities xk, and

unobserved amenities εk. Residents seek low rents, low flooding, and high amenities.

Defense decreases flooding, increasing demand and in turn encouraging development.

The endogeneity problem is that residents demand unobserved amenities, and they

bid up rents accordingly. Rents will be correlated with unobserved amenities.

Logit shocks give a closed-form expression for residential choice probabilities ρk.

The denominator captures spatial interdependence: flooding in one location affects
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demand for every location.

ρk =
exp(vk)∑
ℓ exp(vℓ)

(7)

In the rental market, demand for each location is

Dres
k = Nφρk

for total population N and average floor space φ per resident. I take each as given in

the data. The inside options are locations in the core of Jakarta. The outside option

is, collectively, all locations in the periphery. The total population combines core and

periphery, and it evolves exogenously. By the typical log-sum formula, welfare is

Πres =
1

α
ln
∑
k

exp(vk).

The model captures how flooding affects residential welfare and location choices.

The latter determines how flooding affects rents in equilibrium. The key parameters

are flooding coefficient ϕ, which measures the disutility of flooding, and rent coefficient

α, which allows me to monetize this disutility. Moral hazard increases in monetized

disutility ϕ
α
. Intuitively, strong distaste for flooding implies large rent increases from

flood protection, such that development has large gains from forcing defense.

5.2 Estimation

I estimate demand by matching the spatial distribution of the population in 2015.

I take rents to be mortgage payments on observed property prices.7 I take flooding

to be as observed from 2013 to 2020. I focus on mean flooding because Jakarta floods

consistently, although the variance of flooding may create uncertainty that also affects

utility. I assume the periphery is free of flooding, and I set peripheral rents to the

minimum observed within the core. For ∆Xk = Xk−X0 and reference location k = 0,

inverting equation 7 gives an estimating equation.

∆ ln ρk = α∆rk + ϕ∆fk +∆xkγ +∆εk (8)

7 I compute rents rk = τp1k from observed prices p1k, where I set τ = 8.4% to reflect annual payments
on a 30-year mortgage at Bank Indonesia’s 2015 benchmark interest rate of 7.5%.
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Table 1: Residential demand estimates

IV First stage

Estimate SE Estimate SE Mean

Rents (USD/m2/year) -0.032*** (0.004) 144
Ruggedness (index) 12.20*** (1.176) 1.43
Flooding (m/year) -0.490*** (0.097) -15.53*** (2.485) 0.15
Residential amenities (km) 0.110*** (0.018) 1.540*** (0.469) 2.91

District FE x x
Observations 5,780 5,780
F-statistic 108

Each observation is a 300m cell. IV estimation matches population shares, and the first stage is
a regression with rents as the dependent variable. Rents are yearly mortgage payments, which I
compute from property prices in 2015. Flooding is as observed from 2013 to 2020. Residential
amenities measure proximity to schools, health clinics, and passenger rail stations. *** p < 0.01, **
p < 0.05, * p < 0.1.

Estimation is by linear regression. I address rent endogeneity and mismeasurement

by instrumenting with ruggedness as a cost shifter.

5.3 Estimates

Table 1 presents demand estimates, defining locations as 300m cells. I find that

demand is decreasing in rents and in flooding. The flooding coefficient captures

the welfare benefits of decreasing flooding with a sea wall, and the rent coefficient

monetizes these benefits. Demand is increasing in residential amenities, as measured

by proximity to schools, health clinics, and passenger rail stations. As an instrument,

ruggedness raises rents with a large F -statistic in the first stage.

I consider magnitudes by comparing coefficients. The rent and flooding coef-

ficients suggest that mean flood levels require a $2.30 decrease in yearly rents per

square meter as compensating variation. Annual construction of 7M square meters

of floor space from 1999 to 2013 (BPS 2022), combined with a 5% depreciation rate,

suggests 140M square meters of total floor space. Multiplying this total by $2.30
implies yearly damages of $320M, consistent with $300M in accounting damages es-

timated by Budiyono et al. (2015). Flooding has a standard deviation of 0.26 meters

per year. Increasing flooding by one and two standard deviations implies further
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yearly damages of $560M and $1.1B. Increasing flooding by four standard deviations

corresponds to one-meter inundation, which remains within range of sea level rise

projections by 2100 (Fox-Kemper et al. 2021). Yearly damages rise to $2.2B.

One concern is that ruggedness may violate the exclusion restriction by affect-

ing demand directly. I argue that ruggedness is not especially salient to residents

of Jakarta, where many live above ground floor in multi-story buildings and where

walking activity is limited (Cochrane 2017). Jakarta is also relatively flat, unlike

cities like San Francisco where hills affect daily life. At the same time, developers re-

main sensitive to even mild ruggedness because structural integrity requires laying flat

foundations. Where residents do view ruggedness as a disamenity, the exclusion re-

striction remains satisfied if the resulting costs are borne by developers. If ruggedness

affects earthquake safety, for example, then developers must invest in earthquake-safe

construction or be penalized with lower sales prices.

Another concern is that flooding may be correlated with unobserved amenities.

But I estimate a flooding coefficient that implies reasonable valuations of yearly flood

damages, as computed above. On one hand, flood zones may enjoy positive amenities.

If coastal proximity bundles flooding and ocean views, then it attenuates the impact of

flooding on demand. This bias understates the moral hazard problem. But controlling

for coastal distance reveals a small, positive effect on demand, such that coastal

amenities seem not to weigh heavily. On the other hand, flood zones may suffer

negative amenities. If flooding impedes public and private investment, then it worsens

conditions beyond its direct consequences. But such effects are part of flood damages.

An alternative is to study discontinuities in official flood risk measures (Bakkensen

and Ma 2020), but doing so requires disentangling risk perceptions from preferences.

I instead isolate preferences by considering how residents respond to actual flood-

ing, which residents observe contemporaneously. I thus infer the welfare impacts of

future flooding from residents’ reactions to historical flooding. Implicitly, I take his-

torical flooding, which is largely pluvial and fluvial, as informative of future flooding,

which is largely coastal. While flooding is flooding, some extrapolation is unavoidable

as sea level rise comes with flooding at unprecedented levels. And while historical

flooding does capture tail risk, including 30- and 50-year floods in 2013 and 2020, it

does not capture permanent future inundation. In understating the damages from

21



inundation, I understate moral hazard.

I do not directly capture dynamics, costly migration, or endogenous amenities.

First, I model residents as myopic and thus constrain dynamics to the supply side.

The resulting bias is ambiguous and depends on the nature of expectations.8 Second,

I allow residents to move frictionlessly across space and thus understate the costs of

moving inland. This assumption simplifies estimation and is arguably appropriate for

the long-run counterfactuals of interest, as migration costs are minimal over long time

horizons. Appendix C shows how to model and estimate migration costs. Third, I

recover amenities and hold them fixed in counterfactuals, even as flooding takes hold

and residents move inland. That is, I do not allow inland agglomeration to improve

inland amenities, and so I overstate the costs of moving inland. Consequently, I

understate the cost of coastal lock-in and moral hazard.9

6 Supply

Developers determine the supply of development, investing with current and

future rents in mind. Estimation matches development choices.

6.1 Model

Landowners make forward-looking investments in durable, immobile develop-

ment, which they lease for rental revenue. Development and defense are complements

because defense offers flood protection that raises rents. In each location k and period

t, landowners i have individual plots of developed or empty land. Individual state

dikt ∈ {1, 0} records whether plots are developed or empty, and hikt records building

8 On one hand, suppose flood realizations affect beliefs. Current flooding increases expected future
flooding, and forward-looking residents react strongly to this permanent shock. A static model
attributes the strong response to current flooding alone, thereby overstating the disutility of
flooding. On the other hand, suppose expectations are correct and unaffected by realizations.
Current flooding does not increase expected future flooding, and forward-looking residents react
modestly to this transient shock. A static model attributes the modest response to current
flooding alone, thereby understating the disutility of flooding.

9 At the same time, inland improvements are themselves costly, and these costs attenuate the bias
from holding amenities fixed. Separately, I do not account for the cosmetic disamenities of a sea
wall, as I do not observe large-scale sea walls in the data.
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heights of developed plots. The choices are whether to develop and how high to build.

These choices are permanent, and both contribute to densification. They depend on

aggregate state st, which tracks rents rkt, construction costs ckt, property prices p1kt

for developed plots, and land prices p0kt for empty plots across locations k.

st = {rkt, ckt, p1kt, p0kt}k

Landowners are small and take the aggregate state as given. Landowners draw indi-

vidual cost shocks but are otherwise homogeneous within locations: they face equal

rents, costs, and prices. However, the model accommodates rich heterogeneity across

locations, and the data allow me to define locations granularly.

Landowners of developed plots collect rents, then choose to sell or hold. Denoting

developed state dikt = 1 with superscripts one, the value function is

V 1
kt(h) = αrkth+ Ṽ 1

kt(h), (9a)

Ṽ 1
kt(h) = max{αp1kth, βE[V 1

kt+1(h)]} (9b)

for building height h. I write V 1
kt(h) = V 1

k (h, st) and Ṽ 1
kt(h) = Ṽ 1

k (h, st), such that

subscripts t denote dependence on state st. In the first line, landowners collect rents

rkt for each floor of building height. Parameter α is the utility of money, and it governs

how strongly development responds to increased rents. Landowners then receive the

value Ṽ 1
kt(h) of a choice. In the second line, this choice is to sell or hold. If they sell,

they collect property price p1kt for each floor of building height. If they hold, they

receive the value V 1
kt+1(h) of continuing to own a developed plot in the next period.

Expectations are over future state st+1.

Landowners of empty plots choose to develop, sell, or hold. Denoting empty

state dikt = 0 with superscripts zero, the value function is

V 0
kt = E[max{V̂ 1

kt + ε1ikt, Ṽ
0
kt + ε0ikt}], (10a)

V̂ 1
kt = max

h
{βb+1E[V 1

kt+b+1(h)]− ckt(h)}, (10b)

Ṽ 0
kt = max{αp0kt, βE[V 0

kt+1]}. (10c)
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In the first line, landowners choose to develop or not given idiosyncratic logit shocks

(ε1ikt, ε
0
ikt). Expectations are over the logit shocks. In the second line, landowners have

chosen to develop. They then choose building height h to maximize expected profits.

Building high increases rentable floorspace and thus the expected value V 1
kt+b+1(h)

of owning development, subject to time to build b. But building high also increases

construction costs ckt(h). Expectations are over future state st+b+1. In the third line,

landowners have chosen not to develop. They then choose to sell or hold. If they sell,

they collect land price p0kt. If they hold, they receive the value V 0
kt+1 of continuing to

own an empty plot in the next period. Expectations are over future state st+1.

Construction costs are a function of building height h, flooding fkt, observed

costs xkt, and unobserved costs εkt. For θ = (α, ϕ, γ, ε), I note the distinction between

supply parameters θdev in this section and demand parameters θres in the last section,

although I suppress these superscripts to lighten notation.

ckt(h) =
1

2
ωh2 + ϕfkt + xktγ + εkt (11)

Common costs within locations will imply common choices hkt of building height.

These costs are upfront costs: future owners must bear future flow costs, and so flow

costs are captured by property prices. Building height faces convexity ω. Flooding can

be costly if flood protection involves private investment, while observed costs capture

other dimensions of spatial heterogeneity. The endogeneity problem is that property

prices depend on construction, which depends on unobserved costs. Property prices

will be correlated with unobserved costs.

Logit shocks give development choice probabilities δkt. Development is increasing

in the value V̂ 1
kt of owning a developed plot and decreasing in the value Ṽ 0

kt of owning

an empty plot.

δkt =
exp

(
V̂ 1
kt

)
exp

(
V̂ 1
kt

)
+ exp

(
Ṽ 0
kt

) (12)

In the rental market, supply in each location is

Ddev
kt+b+1 =

∑
i

[dikt + (1− dikt)δkt]hkt.
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By the typical log-sum formula, welfare is

Π1
kt(h) = rkth+

1

α
Ṽ 1
kt(h), Π0

kt =
1

α
ln

(
exp

(
V̂ 1
kt

)
+ exp

(
Ṽ 0
kt

))
.

The model captures how flooding affects landowner welfare and development

choices. The latter determines how flooding affects rents in equilibrium. The key

parameters are rent coefficient α and construction costs ckt. Moral hazard increases

in α. If rents are valuable, then development has large gains from raising rents by

forcing defense. Moral hazard also increases in ckt. If construction costs are high, then

development generates low profits that depend crucially on defense. Development

thus has large gains for forcing defense. Stated differently, large construction costs

are large sunk costs that amplify the difference between ex-ante and ex-post incentives

to defend. This difference drives time inconsistency and thus moral hazard.

6.2 Equilibrium

Flooding affects rents, property prices, and land prices in equilibrium. In the

rental market, equilibrium rents equalize residential demand and developer supply.

Dres
kt (rkt) = Ddev

kt (rkt) ∀ k, t

Flooding reduces rents by reducing residential demand. In the property and land mar-

kets, risk-neutral real estate investment trusts (REITs) have competitive demand for

both developed and empty plots. Equilibrium prices are therefore given by landowner

indifference between selling or not in each period.

Ṽ 1
kt(h) = αp1kth = βE[V 1

kt+1(h)], Ṽ 0
kt = αp0kt = βE[V 0

kt+1] (13)

If rents are high relative to property prices, then REITs arbitrage by purchasing

developed plots and collecting rents over time. If rents are high relative to land prices,

then REITs arbitrage by purchasing empty plots, developing them, and collecting

rents. Perfect competition leads to complete arbitrage. I thus obtain pricing equations

p1kt =
∞∑

t′=1

βt′E[rkt+t′ ], p0kt =
β

α
ln

(
exp

(
E[V̂ 1

kt+1]
)
+ exp

(
E[Ṽ 0

kt+1]
))

.
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Prices are tied to rents. Property prices p1kt are the net present value of collecting

rents over time. Land prices p0kt are the option value of development, which in turn

depends on rents. Flooding reduces prices by reducing rents.

6.3 Estimation

I estimate supply by matching the spatial distribution of new construction be-

tween 2015 and 2020. Dynamics introduce the challenge of computing continuation

values. Inverting equation 12,

ln δkt − ln(1− δkt) = V̂ 1
kt − Ṽ 0

kt.

Development choices depend on V̂ 1
kt and Ṽ 0

kt, which by definitions 10b and 10c contain

continuation values V 1
kt+b+1(h) and V 0

kt+1. These continuation values typically require

specifying expectations and solving the model. I instead read these values from the

data in the spirit of Kalouptsidi (2014). In particular, by equations 13, observed

prices capture continuation values. First, Ṽ 0
kt = αp0kt holds directly. Second, applied

to definition 10b,

V̂ 1
kt = max

h
{αβbE[p1kt+b]h− ckt(h)}.

Third, taking the first order condition and applying cost equation 11,

hkt =
αβb

ω
E[p1kt+b].

Tall construction hkt reflects high expected property prices p1kt+b. Finally, combining

the above, I obtain an estimating equation.

ln δkt − ln(1− δkt) =
1

2
ωh2

kt − αp0kt − ϕfkt − xktγ − εkt (14)

Estimation reduces to simple linear IV regression. The main data requirements

are measures of building construction and land prices. Indeed, such measures are

available in many urban settings, although perhaps not in rural settings. Building

construction data give probabilities δ̂kt of new development, which I compute from the

data in a first stage. I do so by applying a frequency estimator and smoothing non-
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Table 2: Developer supply estimates

IV First stage (h2kt) First stage (P 0
kt)

Estimate SE Estimate SE Estimate SE Mean

Building height (m) 1.415*** (0.412) 9.29
Land prices (100 USD/m2) 0.169*** (0.039) 11.8
Residential amenities (km) 1.381*** (0.372) 0.191*** (0.045) 2.91
Flooding (m/year) 0.063 (0.042) -6.226** (3.043) -0.917*** (0.246) 0.15
Ruggedness (index) -0.148*** (0.055) 9.879** (4.924) 1.462*** (0.123) 1.43

District FE x x x
Observations 5,780 5,780 5,780
F-statistic 13.75 17.80

Each observation is a 300m cell. IV estimation matches development probabilities, and I show first
stage regressions with building heights and land prices as dependent variables. Land prices are
from 2015. Flooding is as observed from 2013 to 2020. Residential amenities measure proximity to
schools, health clinics, and passenger rail stations. *** p < 0.01, ** p < 0.05, * p < 0.1.

parametrically across bins. Building height data give hkt.
10 Prices act as numeraire,

and I assume β = 0.95. The endogeneity problem can be seen directly: unobserved

costs εkt affect the supply of development, which influences rents over time and thus

both property prices p1kt and land prices p0kt. Land prices appear directly as a regres-

sor, while property prices appear indirectly through building heights hkt. I address

price endogeneity and mismeasurement by instrumenting with residential amenities

as demand shifters.

6.4 Estimates

Table 2 presents supply estimates, defining locations as 300m cells. I find that

supply is increasing in prices. The price coefficient captures how strongly developers

respond to higher prices when sea wall construction reduces flooding and raises de-

mand. Supply is unresponsive to flooding beyond this demand-side effect on prices,

and flooding may even encourage development conditional on prices. The mean level

of flooding decreases costs by a small and statistically insignificant $6 per square me-

10 I measure hkt, and so I do not need to specify time to build b. Without measures of hkt, the
alternative is to impose specific values for h and b, then work directly with expected property
prices E[p1kt+b]. Doing so requires additional structure on expectations. By rational expectations,
for example, E[p1kt+b] = p1kt+b + ηkt for observed p1kt+b and expectational error ηkt.
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ter, perhaps reflecting government intervention. Supply is decreasing in ruggedness,

which at mean levels imposes costs of $125 per square meter. As an instrument,

residential amenities raise prices with large F -statistics in the first stage.

The exclusion restriction requires that residential amenities do not affect supply

directly, as is reasonable if construction does not itself rely on schools and clinics. But

residential amenities may be correlated with unobserved developer amenities that do

affect supply. Warehouse access and building regulations are two such examples.

The resulting bias will attenuate the price elasticity and understate the moral hazard

problem if residential and developer amenities are negatively correlated. In this case,

high prices come with low developer amenities, muting the extent to which high prices

encourage high supply. Indeed, warehouses locate away from schools and clinics,

which bid up real estate prices by occupying land and increasing demand. And

building regulations may be more loosely enforced away from residential clusters.

Equations 13 are key for estimation. They imply that observed prices reflect ex-

pected future profits, thereby sidestepping the need to compute continuation values.

First, I assume that efficient markets equalize prices and expectations. Developers ea-

gerly develop if prices exceed expectations, leading to high supply that pushes prices

down toward expectations. Similarly, developers reluctantly develop if expectations

exceed prices, leading to low supply that pushes prices up toward expectations. Es-

timation accommodates inefficiencies like thin markets and transaction costs, which

load onto unobserved costs, but counterfactuals will hold them fixed.

Second, I abstract from developer market power. If development is not perfectly

competitive, then observed prices do not fully capture continuation values. That is,

individual developers affect market prices, and so their development choices change

market prices relative to those that I observe in the data. I maintain this simplification

because my focus is on strategic interaction between development and defense, rather

than among individual developers. For estimation, the assumption is that developers

take prices as given. I fully allow for moral hazard under weak non-commitment, by

which individual developers act taking aggregate development as given.11 I also allow

for moral hazard under strong non-commitment through a current government, local

11 This aggregate-individual interplay echoes “big K, little k” distinctions in macroeconomics.
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government, or developer association that encourages aggregate development, includ-

ing through weak coastal regulation, even as individual developers act competitively.

I do not allow for moral hazard through individual developers that are large enough

to influence either market prices or aggregate development, but developers are small

indeed. Government data for Jakarta record 14,505 construction companies in 2021,

including 1,024 with annual revenues exceeding $3.5M (BPS 2022). Competitive

pressure exists even at the top end.

The main advantage of my approach is that estimation remains flexible on expec-

tations, including as they relate to future flooding and defense. In effect, equations

13 recast the long-run decision to develop and rent as a short-run decision to develop

and sell outright. I accommodate long-run expectations of any form because they

capitalize into prices that I observe. Expected flooding and defense affect rents, but

forward-looking markets capitalize these expectations into prices. The same applies

for moral hazard. If the current government encourages coastal development with

weak regulation, knowing that the future government must bear the cost of defense,

then this encouragement boosts coastal prices. That is, estimation with price data

accommodates a range of complex, long-run expectations without the need to specify

them explicitly. Prices act as a sufficient statistic for the incentives to develop.

Finally, I compare approaches for dynamic discrete choice estimation. The full-

solution approach is computationally intensive, with repeated calculation of contin-

uation values following the nested fixed point algorithm of Rust (1987). Two-step

approaches simplify computation by estimating continuation values from data, ap-

plying conditional choice probability methods from Hotz and Miller (1993). The

Euler conditional choice probability approach of Scott (2013) perturbs the timing of

investment to derive a linear estimating equation, offering straightforward estimation,

transparent identification, and flexibility on expectations.12

I retain these benefits, but I note several differences. Appendix C treats develop-

ment as a terminal action to derive an Euler estimating equation, as in Hsiao (2024a).

12 The Euler approach exploits finite dependence, which holds when two sequences of actions with
different initial choices lead to the same distribution of future states. Finite dependence al-
lows continuation values to difference out. Arcidiacono and Miller (2011) show how two-step
approaches can apply finite dependence more generally.
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For ∆Xkt = Xkt − βXkt+1 and expectational error ηkt,

∆ ln δkt − ln(1− δkt) =
1

2
ω∆h2

kt − ϕ∆fkt −∆xktγ −∆εkt + ηkt.

First, the Euler approach accounts for dynamics by leaning heavily on the exact

timing of observed choices, comparing action in periods t and t+1. I lean instead on

observed variation in prices across space. Second, the Euler approach applies rational

expectations, such that E[Xkt+1] = Xkt+1 + ηkt. I assume instead that the future

is capitalized into current prices. Third, the Euler approach requires two periods of

data to construct differences ∆Xkt. I only require one period.

7 Government

I characterize the benefits of government intervention with a hydrological flood

model, and I capture the costs with engineering estimates.

7.1 Benefits

A hydrological model of flooding captures the benefits of a sea wall, which reduces

flooding across Jakarta. I adopt a machine-learning approach to modeling flooding,

following the frontier in hydrology as reviewed by Mosavi et al. (2018). I train and

validate the model on observed flooding from 2013 to 2020, which I measure monthly

and at the tract level. As input data, I use rainfall, elevation, slope, and distances to

major rivers, minor rivers, and the coast. I train a range of machine learning models

and find that a histogram gradient boosting decision tree performs best. I impose

monotonicity constraints on distance to major rivers and elevation, which help to

reduce overfitting by applying basic physical properties without the complexity of

modeling the full physical system. Appendix C describes this procedure in detail.

The trained model characterizes how a sea wall affects flooding across Jakarta.

Figure 4 shows the impact of a sea wall, which I simulate by raising the elevation of

the city. The predictions align with intuition. The coastal north benefits most from

the sea wall, particularly in low-elevation areas that flood regularly in the absence of

defense. A small set of coastal areas benefit only modestly because flood risk is very
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Figure 4: Reductions in flooding

(a) 3m sea wall (b) 5m sea wall

I map reductions in flood frequency, as measured in months per year, following the construction of
a sea wall. I use the trained hydrological model to simulate the sea wall, raising elevation by 3m
and 5m in the figures above, then I compute predicted changes in flood frequency over space.

high, such that flooding persists even with defense. At the same time, some parts

of the high-elevation south also benefit from a sea wall, as improved drainage in the

north alleviates river flooding in the south.13 I ignore existing sea wall protections,

which a 2020 government report calls “very poor” (NCICD 2020). I do not consider

partial, neighborhood-specific sea wall construction because only a full sea wall, which

extends across the entirety of Jakarta Bay, can hold back the sea.

Similarly, I simulate future sea level rise and land subsidence by lowering the

elevation of the city. For global mean sea level rise, I use central projections from

the IPCC: 0.20m by 2050, 0.56m by 2100, and 0.92m by 2150 (Fox-Kemper et al.

2021). Each is relative to sea levels in 2014, which I treat as a 2015 baseline. I

assume that sea levels rise at constant rates within 50-year intervals, and I extrapolate

linearly beyond 2150 based on average annual rates from 2014 to 2150. For local land

subsidence, I use projections from Andreas et al. (2018) for 2050. These projections

are specific to Jakarta, heterogeneous across space, and relative to land elevation in

1977. Subsidence exceeds 5m in some northern neighborhoods. I compute changes

13 A benefit of the machine learning approach is that it can capture this interaction without the
need to specify the complex physical processes that determine river drainage.
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relative to 2017 estimates, which I treat as a 2015 baseline. I again assume constant

rates within 50-year intervals, and I extrapolate linearly beyond 2050 based on average

annual rates from 1977 to 2050.

7.2 Costs

I focus on direct costs of Jakarta’s planned sea wall. I obtain engineering cost

estimates from government reports on the planned wall, which runs onshore along the

coast and offshore through Jakarta Bay (NCICD 2014, 2020). Onshore length is 60km

with a height of 4m, while offshore length is 32km with a height of 24m, of which

8m is above water. Estimated costs are $11B in 2014 USD: construction costs of $2B
onshore and $6B offshore, plus maintenance costs that add 35% in net-present-value

terms.14 Government plans seek protection against sea levels of up to 4m above street

level, as land subsidence drives expectations of 3m to 5m by 2050.

I use these estimates to project costs for sea walls of alternative heights. I assume

that 1m of sea level rise requires walls with 1m of height onshore and 2m of above-

water height offshore, following the ratios of the current plan. For example, relative to

the planned 4m sea wall, the 3m wall of figure 4 would require 3m of height onshore

and 6m offshore. I compute costs following Lenk et al. (2017), who analyze cost

estimates for sea walls in Canada and the Netherlands. They find costs to be roughly

linear in height and length. Indeed, I find this linearity to hold for Jakarta, where

both onshore and offshore estimates imply similar unit costs despite different heights

and lengths. For a sea wall of height g in meters, costs reflect onshore and offshore

unit costs of $10.67M and $10.78M per meter-kilometer, heights of g and 2g + 16

meters, and lengths of 60 and 32 kilometers. For 3m and 5m sea walls, total costs are

thus $9.5B and $12B.15

In focusing on these direct costs, I understate the moral hazard problem. The

14 The 2014 and 2020 plans provide similar estimates once adjusted for differences in proposed
offshore sea wall lengths (25km in 2014 vs. 32km in 2020). Total costs for 2014 include pumping
stations, jetties, and mangrove restoration, and those for 2020 include pumping stations, retention
basins, and river dikes. I exclude non-flood investments in transport, land reclamation, and port
development, which in early plans brought total costs to higher levels.

15 For a 3m wall, offshore above-water and total heights are 6m and 22m. For a 5m wall, these
heights are 10m and 26m. Each is relative to 8m and 24m for the planned 4m wall.
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greater the uninternalized costs of defense, the greater the incentives to engage in

coastal moral hazard. First, I abstract from the opportunity costs of public funds,

which are likely to be substantial. The billions spent on the sea wall could instead

be spent on education and health infrastructure inland. Second, I abstract from

the costs of disaster aid, which are not as well documented in official records. The

consequence is that the empirical analysis of moral hazard will be restricted to the

strong commitment and strong non-commitment cases of the theoretical analysis.16

8 Counterfactuals

I quantify the moral hazard problem by showing how coastal development and

defense vary with government commitment. Integrated policy alleviates moral hazard.

8.1 Solving the model

I focus on the strong commitment and strong non-commitment cases of the theo-

retical analysis in section 3, and I refer simply to commitment and non-commitment. I

extend the single-location, single-period model across multiple locations and periods.

Under commitment, I solve the analogues of equilibrium conditions 2 for development

and defense (dC , gC). Under non-commitment, I solve the analogues of equilibrium

conditions 5 for (dN , gN). I solve across locations in spatial equilibrium and across

periods with backward induction over a finite horizon from 2050 to 2500, as detailed

in appendix D.1. I treat the 2015 data as initial conditions.

For tractability, I simplify the spatial dimension by aggregating over 300m cells

and solving across 267 neighborhoods. I simplify the time dimension by imposing

that government investment in defense occurs at 50-year intervals, reflecting that sea

walls last up to 50 years before requiring major repair. Defense maintains full efficacy

16 The focus on sea wall costs implies e(d, g) = e(g), which incorporates uninternalized costs of
defense but not of development. In this case, strong commitment, weak commitment, and weak
non-commitment coincide because commitment to g fixes e(g), and so it is equivalent for de-
velopment d to maximize private profits π(d, g) or social welfare w(d, g) = π(d, g) − e(g). An
alternative to disaster aid is internalities, which reintroduce uninternalized costs of development.
This approach would take engineering costs of flood damages as a paternalistic benchmark for
private flood damages, then draw a contrast to those internalized by residents, as revealed in
demand estimation by where residents choose to live.
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during its lifespan, then depreciates fully. I allow residents to move and developers

to build every five years, but I constrain development to proceed at a constant pace

within each 50-year interval.

8.2 Quantifying moral hazard

I quantify moral hazard by studying commitment of varying degrees. This com-

mitment dictates the government’s ability to resist static incentives in favor of dy-

namically optimal strategies. Full commitment achieves the first best by holding to

a pre-announced, fixed path of defense that maximizes social welfare over time. In

every period, defense does not respond to development, and the government internal-

izes both current and future costs of defense. This formulation is equivalent to full

regulation that taxes development for the costs of defense. By contrast, no commit-

ment allows for moral hazard. In every period, defense responds to development, and

so development takes advantage to force added defense at uninternalized cost.

Partial commitment lies between these extremes, and it acknowledges rotating

governence. Limited commitment is phased out. The government acts with full com-

mitment in 2050 to maximize social welfare over time, weighing both current and

future costs of defense. But then future governments act with no commitment. Con-

versely, delayed commitment is phased in. The government acts with no commitment

in 2050. Then future governments act with full commitment to maximize social wel-

fare over time. In both cases, political myopia undercuts commitment by creating

moral hazard across administrations. If current governments do not internalize fu-

ture costs of defense, which are borne instead by future governments, then current

governments themselves engage in over-development and defense at the coast.

Table 3 presents the results. I report new coastal development and defense over

time relative to their full-commitment outcomes. I define the coast as the adminis-

trative region of North Jakarta, which covers 22% of Jakarta’s land area and includes

the entirety of the coast. I report city-wide social welfare impacts in dollar terms

relative to a scenario with zero defense. As is typical of logit models, welfare im-

pacts are identified in changes but not levels. Appendices D.2 and D.3 plot coastal

development and defense from 2050 to 2250, including under zero defense.
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Table 3: Commitment

Coastal development Coastal defense
Social
welfare

2050 2100 2200 2050 2100 2200 NPV

Full commitment 1.00 0.67 0.30 1.00 1.36 1.77 14.73
No commitment 1.62 1.30 0.84 1.34 2.05 3.07 -4.66

Limited commitment 0.86 1.45 0.94 0.92 1.71 2.86 1.01
Delayed commitment 1.50 0.50 0.22 1.27 1.55 1.85 12.30

Limited myopic commitment 1.32 1.36 0.88 1.17 1.92 2.99 -1.06
Delayed myopic commitment 1.58 1.06 0.53 1.32 1.89 2.56 6.26

Coastal development and defense are new development and defense activity in North Jakarta in
2050, 2100, and 2200. I normalize each by dividing by full-commitment outcomes in 2050. Social
welfare is a net present value measured in 1B USD with 2015 dollars, relative to the zero-defense
scenario. Each row is one counterfactual. Full commitment chooses defense upfront and adheres to
the plan. No commitment chooses defense in a sequential static manner. Limited commitment is
full commitment in 2050, then no commitment. Delayed commitment is no commitment in 2050,
then full commitment. Under political myopia, governments that act with commitment internalize
their own costs of defense but not future costs of defense, which fall instead on future governments.

Full commitment leads to gradual coastal retreat. Coastal defense protects de-

velopment in the short term, when private gains outweigh public costs. Defense rises

over time as sea level rise takes hold, but defense rises at a restricted pace. Coastal

development then falls as coastal risk grows in severity. By contrast, no commitment

leads to stronger and more sustained coastal defense, which encourages coastal devel-

opment and delays coastal retreat – even despite substantial sea level rise. In 2200,

new coastal development activity is nearly three times as high under no commitment

as it is under full commitment.

I also consider welfare impacts. Under full commitment, government action gen-

erates $14.73B in social welfare gains relative to inaction. While these gains are

meaningful, they are modest in comparison to total GDP of more than $200B in 2024

alone (BPS 2025). Without coastal defense, coastal flooding prompts residents to

move inland, bidding up inland rents and increasing inland development. Consistent

with Desmet et al. (2021), inland gains offset coastal losses and mitigate overall dam-

ages. But it is precisely because of this inland alternative that coastal moral hazard

is socially costly. Under no commitment, government action leads to welfare losses of
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$4.66B relative to inaction. Social welfare is lower than in the zero-defense scenario

because over-defense at the coast is costly. Moral hazard eliminates the first-best

welfare gains, and it is severe enough that even inaction dominates. The difference

between full and no commitment – nearly $20B – captures the resulting welfare losses.

Appendices D.4 and D.5 consider robustness and extensions. For robustness, I

perturb the assumed discount factor, the estimated demand and supply elasticities,

and the imposed horizon and timing. As extensions, I consider political lobbying for

development, uncertainty over future flood risk, amenities that improve with inland

migration, and depreciation of coastal development. The qualitative results hold

throughout.

8.3 Partial commitment

Partial commitment can help. Limited commitment dominates no commitment,

achieving welfare gains of $1.01B relative to inaction. I note that commitment in

2050 involves low levels of coastal development and defense, even relative to the first

best. The reason is that the current government has first-mover advantage, and so

it can influence the extent to which future development forces future defense. The

current government uses this advantage to protect future governments from moral

hazard, incurring short-run losses in order to realize long-run gains. Even so, delayed

commitment is more impactful because it involves a longer period of commitment.

This commitment limits the extent to which development in 2050 can force future

defense, even as delayed commitment allows development to force defense in 2050.

The resulting welfare gains of $12.30B, relative to those under full commitment in

every period, suggest that non-commitment in 2050 comes at a social cost of $2.43B.

Political myopia undercuts both limited and delayed commitment. Under limited

commitment, the current government only protects future governments if it internal-

izes the future costs of defense. Otherwise, political myopia encourages the current

government to do just the opposite: engaging in moral hazard and forcing future

defense. Future defense raises future rents and thus current real estate prices, which

the current government values. Future defense also reduces the current need to move

inland, which the current government finds costly. As such, the current government
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Table 4: Integrated policy

Coastal development Coastal defense
Social
welfare

2050 2100 2200 2050 2100 2200 NPV

Inland investment
Full commitment 0.77 0.53 0.26 0.68 0.90 1.16 13.77
No commitment 1.07 0.83 0.50 0.80 1.15 1.63 10.04

Subsidence control
Full commitment 0.81 0.50 0.19 0.67 0.88 1.09 22.33
No commitment 1.03 0.69 0.31 0.76 1.04 1.36 20.46

Coastal regulation
Full commitment 0.79 0.58 0.32 0.89 1.20 1.61 11.15
No commitment 1.22 1.04 0.75 1.12 1.68 2.57 -0.95

Coastal development and defense are new development and defense activity in North Jakarta in 2050,
2100, and 2200. I normalize each by dividing by full-commitment outcomes in 2050. Social welfare
is a net present value measured in 1B USD with 2015 dollars, relative to the baseline zero-defense
scenario. Each row is one counterfactual. Full commitment chooses defense upfront and adheres to
the plan. No commitment chooses defense in a sequential static manner. Integrated policy combines
coastal defense with inland investment that reduces coastal demand by 25%, subsidence control that
slows land subsidence by 25%, or coastal regulation that imposes 25% of the Pigouvian tax.

uses its first-mover advantage to push coastal concerns onto future administrations.

Coastal activity is elevated relative to the first best, leading to welfare losses of $1.06B,
and inaction dominates again. At the same time, coastal activity and social welfare

losses are still reduced relative to no commitment. Current development cannot force

current defense, as the current government uses its commitment power to avoid being

exploited itself. Finally, political myopia undercuts delayed commitment to an even

greater extent, but it still allows for welfare gains of $6.26B.

8.4 Integrated policy

Table 4 shows how integrated policy navigates the commitment problem. I pair

sea wall defense with three complementary policies. First, I consider inland invest-

ment that reduces coastal demand by 25%. Lower gains from forcing defense lessen

moral hazard substantially. Government action dominates inaction even under no

commitment. Second, I slow land subsidence by 25%. Lower flood risk increases wel-
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Figure 5: Coastal prices

(a) Commitment (b) Flood risk

The left figure computes model-implied coastal land prices in 2015 while varying government com-
mitment. Sea level rise is the central, baseline projection. I take commitment to be fixed over time,
and I define a simple measure g(x) = xgC + (1 − x)gN of partial commitment for x ∈ [0, 1], full-
commitment gC , and non-commitment gN . The right figure computes model-implied prices while
varying flood risk. The government acts with full commitment. I normalize observed prices to one.

fare, and smaller gains from defense lessen moral hazard. Government action again

dominates inaction. Eliminating subsidence requires expensive technology and strong

regulation, but I show that modest reductions are still effective. Third, I impose reg-

ulation equivalent to 25% of the Pigouvian tax on coastal development. As with

subsidence, perfect regulation is challenging. But even imperfect regulation under-

cuts moral hazard. Moral hazard remains strong enough that zero defense dominates

defense with no commitment, but the difference is smaller than it is without coastal

regulation.

8.5 Coastal prices

I argue that moral hazard has at least partially driven development to date.

I do so through the lens of the model by computing model-implied prices, which

I compare to the prices I observe in the data. Figure 5 plots the comparison for

coastal land prices in 2015. In the left subfigure, I vary the level of government

commitment while fixing sea level rise to be as projected in baseline. Model-implied

prices under zero defense are much lower than observed, indicating the market’s

faith in government capacity to defend. Less commitment leads to more coastal
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defense and higher coastal rents over time, implying higher coastal prices. Thus, high

observed prices suggest that current development anticipates low levels of government

commitment. That is, inverting the model allows me to infer expectations from

data. I note that this inversion relies crucially on the flexibility of estimation with

respect to these expectations. If I needed to specify expected non-commitment when

estimating model parameter from data, then the data and estimated model would be

tautologically consistent with expected non-commitment.

I also ask whether biased flood perceptions can explain high coastal prices. In

the right subfigure, I vary the extent of sea level rise and thus the path of future

flood risk. The baseline sea level rise scenario draws on central projections from Fox-

Kemper et al. (2021), and it corresponds to the 50th percentile of flood risk. I draw on

the full range of projections to construct a range of flood risk scenarios. Throughout,

I shut off moral hazard by imposing full commitment. I find that appealing to flood

perceptions alone requires extreme and prolonged optimism to match observed prices.

Moral hazard can rationalize observed prices, but flood perceptions cannot.17

8.6 Policy implications

Dynamic effects call for commitment to long-run adaptation policy, but com-

mitment is difficult in practice. I offer two policy recommendations for navigating

this challenge. First, partial commitment remains helpful. Persistence allows current

policy to have future benefits, even if implemented temporarily. Limited commit-

ment helps to reduce moral hazard, particularly when forward-looking governments

internalize the costs of future defense. Similarly, anticipation allows future policy to

have current benefits. Delayed commitment and opposition-party pledges can each

generate welfare improvements today.

Second, integrated policy further alleviates moral hazard. This policy accepts the

political difficulty of commitment at the coast and instead proceeds more indirectly.

In particular, it pairs sea wall construction with inland investment policies aimed

at reducing coastal demand. Indeed, current efforts to relocate the political capital

17 Each exercise fixes discount factor β = 0.95. With larger β, future flooding implies low future
rents that cannot rationalize high asset prices today. With smaller β, the low net present value
of rents again cannot rationalize high asset prices today.
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from Jakarta are consistent with such an approach. I show that these efforts, even

if externally motivated, also lessen coastal frictions. Integrated policy can also seek

to slow land subsidence and strengthen coastal regulation. Despite the challenges in

doing so, any incremental progress serves to reduce coastal moral hazard. These moral

hazard benefits should be considered alongside the direct benefits of such policies.

9 Conclusion

This paper studies adaptation to sea level rise in Jakarta, the second-most popu-

lous city in the world. Jakarta provides an early view into the future for other major

coastal cities like Bangkok, Shanghai, and New York, which are under threat as sea

levels continue to rise worldwide (Hsiao 2025). I show that adaptation faces important

frictions, including over the long run, as government intervention can worsen lock-

in by creating moral hazard at the coast. I quantify the welfare losses from moral

hazard, and I evaluate policy options for navigating this challenge. Government com-

mitment reduces moral hazard but is subject to fundamental political constraints,

although partial commitment remains helpful. Integrated policy acknowledges these

constraints and allows for welfare gains even absent full commitment.
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ONLINE APPENDIX

A Theory

Coastal and inland locations

Consider two locations: coastal and inland. I study coastal development d,

coastal defense g, and inland development δ. There is no inland flooding and thus no

inland defense. Social welfare is private profits net of public costs.

w(d, g, δ) = π(d, g, δ)− e(d, g)

As in the baseline model, private profits have increasing differences in (d, g), while

public costs have decreasing differences. Residents choose across space, such that

inland and coastal locations are substitutes. Thus, inland development lowers the

marginal benefit of coastal development and defense by drawing residents away from

the coast. That is, private profits have decreasing differences in (d, δ) and (g, δ). For

d′ > d, g′ > g, and δ′ > δ,

π(d′, g, δ′)− π(d, g, δ′) < π(d′, g, δ)− π(d, g, δ),

π(d, g′, δ′)− π(d, g, δ′) < π(d, g′, δ)− π(d, g, δ).

Social welfare maximization gives the first best. For comparison, I focus on a

spatial equilibrium under weak non-commitment by the government. Development

maximizes private profits, and defense maximizes social welfare. The first best is

d̂∗ = d∗(ĝ∗, δ̂∗), ĝ∗ = g∗(d̂∗, δ̂∗), and δ̂∗ = δ∗(d̂∗, ĝ∗), and the spatial equilibrium is

d̂S = dS(ĝS, δ̂S), ĝS = gS(d̂S, δ̂S), and δ̂S = δS(d̂S, ĝS) such that

d∗(g, δ) = argmax
d

{
w(d, g, δ)

}
, dS(δ, g) = argmax

d

{
π(d, g, δ)

}
,

g∗(d, δ) = argmax
g

{
w(d, g, δ)

}
, gS(d, δ) = argmax

g

{
w(d, g, δ)

}
,

δ∗(d, g) = argmax
δ

{
w(d, g, δ)

}
, δS(d, g) = argmax

δ

{
π(d, g, δ)

}
.
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Proposition 5. Coastal development and defense crowd out inland development.

d̂S > d̂∗, ĝS > ĝ∗, δ̂S < δ̂∗

Proof. I note that d(g,−δ) increases in g and −δ because π(d, g, δ) has increasing

differences in (d, g) and decreasing differences in (d, δ). Similarly, g(d,−δ) increases

in d and −δ, and −δ(d, g) increases in d and g. As in lemma 1, for generalized

w̃(d, g, δ, θ) = π(d, g, δ) − (1 − θ)e(d, g), these increasing differences imply that the

highest and lowest fixed points (d, g,−δ) are increasing in θ. I thus obtain the result.

Public and private defense

Consider two means of coastal defense: public and private. I study development

d, public defense g, and private defense γ. Social welfare is private profits net of

public costs.

w(d, g, γ) = π(d, g, γ)− e(d, g, γ)

For simplicity, fix development d. Public and private defense are substitutes. Pri-

vate profits have decreasing differences in (g, γ) because public defense g lowers the

marginal returns to private defense γ. Public costs have increasing differences in

(g, γ) because public defense g reduces the need for post-disaster aid and thus lowers

the public cost savings from private defense γ. For g′ > g and γ′ > γ,

π(d, g′, γ′)− π(d, g′, γ) < π(d, g, γ′)− π(d, g, γ),

e(d, g′, γ′)− e(d, g′, γ) > e(d, g, γ′)− e(d, g, γ).

The first best is ĝ∗(d) = g∗(d, γ̂∗) and γ̂∗(d) = γ∗(d, ĝ∗), and the defensive equilibrium

under weak non-commitment is ĝG(d) = gG(d, γ̂G) and γ̂G(d) = γG(d, ĝG) such that

g∗(d, γ) = argmax
g

{
w(d, g, γ)

}
, gG(d, γ) = argmax

g

{
w(d, g, γ)

}
,

γ∗(d, g) = argmax
δ

{
w(d, g, γ)

}
, γG(d, g) = argmax

δ

{
π(d, g, γ)

}
.
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Proposition 6. Public defense crowds out private defense.

ĝG > ĝ∗, γ̂G < γ̂∗

Proof. I note that g(−γ) increases in −γ because w(d, g,−γ) has increasing differ-

ences in (g,−γ). Similarly, γ(−g) increases in −g because π(d, g,−γ) has increasing

differences in (g,−γ). As in lemma 1, for generalized w̃(d, g, γ, θ) = π(d, g, γ)− (1−
θ)e(d, g, γ), these increasing differences imply that the highest and lowest fixed points

(g,−γ) are increasing in θ. I thus obtain the result.

There is ambiguous impact on development d, which is given by d(g, γ) =

argmaxd{π(d, g, γ)}. Private profits have increasing differences in (d, g) and (d, γ), as

public and private defense are substitutes. More public defense ĝG > ĝ∗ encourages

more development, while less private defense γ̂G < γ̂∗ encourages less development.

Anecdotal evidence

The co-determination of development and defense is also salient in practice. In

Jakarta, figure A1 shows examples of interdependence. Developers cite government

defense in planning for and marketing private development on the flood-prone coast.

At the same time, the government cites private development in planning for and

marketing proposed investments in coastal defense.

Similar dynamics arise in the United States. In New Orleans, the National

Flood Insurance Program (NFIP) has enabled continued development in flood-prone

neighborhoods, such as the Lower Ninth Ward. In North Carolina, increased coastal

development led business groups to lobby for House Bill 819, which restricts state

agencies in applying sea level rise projections to policy. In Florida, developers lob-

bied for Urban Development Boundary zoning expansions to allow construction in

hurricane-prone areas, and the state legislature dismantled the Department for Com-

munity Affairs, which managed long-term development risk with initiative like the

Flood Mitigation Assistance program. At the national level, NFIP Risk Rating 2.0

adjusted insurance pricing to better reflect risk, but bipartisan resistance delayed im-

plementation. Furthermore, the US Army Corps of Engineers focuses levee spending

where economic exposure is high via its Levee Safety Action Classification system.
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Figure A1: Co-determination of development and defense

(a) Development given defense

(b) Defense given development
THE GREAT GARUDA WILL BE THE PRIME LOCATION FOR INVESTORS. FOR NEW RESIDENTS IT 

WILL BE A NEW, MODERN PLACE TO LIVE AND FOR JAKARTA RESIDENTS THE PLACE TO ESCAPE 

THE CROWDED CITY WITHOUT TRAVELLING FOR HOURS AND SPEND SOME TIME ON THE WATER 

FRONT WITH CLEAN SEA WATER AND A FRESH BREEZE.

48    National Capital Integrated Coastal Development Project  |  Master Plan  |  Final 1 December 2014

Source: PIK2 Sedayu Indo City (via sedayuindocitypik2.com) and National Capital Integrated
Coastal Development Masterplan (2014, page 48). The figures show private development plans
given proposed government defense, and government defense plans (at early, hand-drafted concep-
tion) given proposed private development.
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B Data

Table B1 lists data sources. This section details data construction and validation.

Building construction

These data come from the Global Human Settlement Layer, with measurements

at the 100m pixel level. Jakarta consists of 65,260 such pixels. For building construc-

tion, 1,900 pixels feature an increase in measured built-up volume between 2015 and

2020. I verify these data with 2015 data from Visicom, a company that produces

satellite-derived 3D maps that capture building heights at the 1m pixel level. These

maps rely on light detection and ranging (lidar) data, which satellites collect by emit-

ting pulsed laser beams and measuring reflection times. Beams that reflect quickly

imply taller building heights, with measurements accurate to the meter. When aggre-

gated to the tract level, the correlation between Global Human Settlement Layer and

Visicom measures is 0.90 for built-up surface and 0.92 for built-up volume. Figure

B1 shows the comparison visually.

Property prices

I construct property prices in four steps. First, I scrape data on property listings

in October 2022 from 99.co Indonesia (www.99.co/id), a major real estate website. I

focus on properties for sale, with listings covering both residential and non-residential

properties in Jakarta. Residential properties include apartments and homes, and non-

residential properties include shops and offices. Listings contain prices, floor spaces,

land areas, addresses, and descriptions.

Second, I geolocate listings with the Google Maps API. As inputs, I supply

property addresses, types, and districts. Property addresses include street names and

sometimes street numbers. I identify street names with the keyword jalan where

possible. For apartments, I also include apartment complex names given keyword

apartemen. As outputs, I obtain formatted addresses with geographic coordinates

and return types. I keep the following return types: street addresses, routes, estab-

lishments, points of interest, premises, and sub-premises. Routes are entire streets
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Table B1: Data sources

Period Source (description)

1975-2020 Global Human Settlement Layer (building construction, populations)
2015 Visicom (building construction)
2022 99.co (property prices)
2015 Brickz.id (property prices) (Harari and Wong 2024)
2015 Jakarta Smart City (land prices)

2013-2020 Regional Disaster Management Agency (flooding)
2022 Jakarta Satu (schools, clinics, rail stations, roads)

1887-1945 Dutch colonial maps (historical land development)

Figure B1: Building volumes (1M m3), GHSL vs. Visicom
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Source: Global Human Settlement Layer and Visicom. Each observation of the binned scatterplot
measures 2015 built-up volume at the tract level. I plot the 45◦ line in light blue.

Table B2: Geocoding property listings

Type All Apartment Home Shop Office

Geocoded proportion 65.5% 84.0% 52.6% 56.0% 39.8%
Geocoded observations 56,222 29,733 17,182 7,786 1,521

Property listings for sale come from 99.co, and geocoding is with the Google Maps API.
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and thus require additional processing to geocode. I compute street lengths from geo-

metric bounds, drop long streets, and geocode the short ones that remain by centroid.

A cutoff length of 1km avoids dropping data excessively while maintaining accuracy

at the tract level. Table B2 shows the high rate of success in geocoding.

Third, I construct property prices at the 300m cell level. I compute prices per

square meter by dividing prices by floor space, dropping the 1% of listings without

information on prices or building areas. I collapse listings with identical addresses

– primarily apartment listings within complexes – into single observations by taking

means. I then aggregate to the tract level as follows. For the 70% of tracts with more

than five observations, I take the mean. For the 30% of tracts with less than five

observations, I compute an inverse-distance-weighted mean of nearby observations.18

I thus obtain property prices for 2022.

Fourth, I backcast the 2022 prices to 2015. I obtain data on 2015 property

transactions from Brickz (www.brickz.id), as scraped and kindly shared by Harari

and Wong (2024). The 2015 data contain 6,929 observations that I use to compute

2015-2022 adjustment factors by district. I do so by computing district means in 2015

and 2022, reweighing 2022 prices to match the property type composition of the 2015

data. The resulting adjustment factors capture price changes over time, as well as

differences between transacted and listed prices. I then apply the adjustment factors

to the 2022 data to obtain 2015 prices. Relying directly on the 2015 prices would

be more straightforward, but the relatively small number of geocoded observations –

around half of the 6,929 transactions – complicates measurement at the tract level.

Historical land development

I construct a panel of historical land development by digitizing maps of Batavia

from the Dutch colonial era. These maps come from the digital collections of Leiden

University Libraries. Table B3 lists years and sources. I select eight maps based on

ease of digitization and a desire for consistent coverage throughout the study period,

but the table lists all available maps. I georeference and digitize the maps, then

18 For the inverse distance weighting, I use a weighting power of two, a smoothing parameter of zero,
a search circle radius of 1km, a maximum of 20 observations, and a minimum of five observations.
I include observations from the periphery of Jakarta.
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Table B3: Dutch colonial maps

Year Source

1887 Visser & Co. (link)
1897 Topographisch Bureau (link)
1904 Seyffardt’s Boekhandel (link)
1910 Official Tourist Bureau (link)
1920 Topografische Dienst (link)
1930 Official Tourist Bureau (link)
1937 G. Kolff & Co. (link)
1945 AFNEI Headquarters Survey Department (link)

Source: Leiden University Library Digital Collections. Maps are also available for 1890 (link), 1905
(link), 1914 (link), 1938 (link), and 1942 (link).

overlay them to form a panel. These data capture the extensive margin of built-up

land development, but not the intensive margins of density or height.

I georeference each map by overlaying it onto an OpenStreetMap base layer. I

do so by selecting and matching five ground control points, as shown in figure B2. I

select these points to prioritize accuracy in the vicinity of the National Monument and

the West Flood Canal, with a modified set of points before the canal is constructed. I

implement the overlay with first-order polynomial (affine) transformation and nearest-

neighbor resampling. This affine transformation preserves the collinearity of points

by applying only rotation, scaling, and translation, avoiding image distortions but

ruling out the exact matching of more than two control points.

I digitize maps with unsupervised machine learning. In each map, red shading

denotes built-up areas, while green and write denote undeveloped lands. I divide

maps into 50m cells, then I take the modal R, G, and B values across pixels in each

cell to obtain one RGB code per cell. I apply a k-means clustering algorithm on these

RGB codes to group cells with similar colors. I choose k to obtain no more than one

grouping of red cells, and I code these cells as built-up. This approach reduces noise

in the image files, which contain red in many different shades. The 1910 map marks

built-up areas with red dots instead of shading, and so I apply shading manually then

digitize it as above. Figure B3 overlays the image inputs and the digitization outputs,

which together illustrate the accuracy of this procedure.
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Figure B2: Ground control points for georeferencing

(a) Pre-1918 maps (b) Post-1918 maps

Red stars mark the five ground control points used for georeferencing.

Figure B3: Land development and the West Flood Canal

(a) Before (1904) (b) After (1945)

Red shading denotes developed lands, and square boxes mark 50m cells that are coded as developed.
I mark the West Flood Canal with a black curve – dotted in 1904 before its construction in 1918,
and solid in 1945 after its construction.
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I then ask whether the construction of the West Flood Canal in 1918 led to

increased land development in protected areas. I leverage a spatial discontinuity in

flooding at the boundary of the canal, which protects areas to its north but not to

its south. I plot the discontinuity in land development around the boundary in the

main text, alongside the lack of a discontinuity before the canal’s opening. In this

analysis and what follows, I aggregate the historical land development data to the

100m cell level by counting the number of developed 50m cells within each 100m

cell. Misalignment across maps can cause measurements at the 50m cell level to

alternate spuriously between developed and undeveloped because of slight differences

in how maps are drawn. Aggregation alleviates this concern without the complexity

of harmonizing data across years. Year fixed effects in the pooled analysis further

account for systematic differences across maps.

Table B4 draws on data from the full panel to measure the discontinuity in each

available year. For cell c and year t, the specification is

Yct = α +
∑
t′

βt′Nc1[t
′ = t] + δc + δt + εct

for land development Yct, dummy Nc for being on the protected north of the canal,

and year fixed effect δt. I compute an optimal bandwidth of 500m, and I restrict

attention to cells within this distance from the boundary. I also show robustness

to this choice. The coefficients of interest are the β terms by year. Cell and year

fixed effects account for permanent, cell-specific determinants of land development

as well as transitory, common ones. The table shows insignificant effects and thus

smoothness across the boundary in all pre-canal years. The discontinuity in land

development emerges only after the canal opens in 1918, and it grows in subsequent

years. Figure B4 provides further validation checks, showing that elevation is smooth

across the boundary and that the canal indeed offers flood protection to its north.

A similar pattern holds in the modern cross-section. Lower flood risk is associated

with higher land prices and more building construction in 2015. Table B5 presents

these results with cross-tract regressions that control for unobservables at the district,

sub-district, and neighborhood levels. Increased flood protection can therefore prompt

increased construction in areas facing long-term flood risk, as it does in the historical
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Table B4: Land development at the canal boundary by year

Bandwidth

300m 400m 500m 600m

North of canal × 1887 -0.06 -0.07 -0.09∗ -0.11∗∗

(0.07) (0.06) (0.06) (0.05)
North of canal × 1897 -0.03 -0.03 -0.00 -0.02

(0.07) (0.06) (0.06) (0.06)
North of canal × 1904 -0.06 -0.08 -0.09 -0.09

(0.07) (0.06) (0.06) (0.05)
North of canal × 1920 0.15∗ 0.23∗∗∗ 0.31∗∗∗ 0.32∗∗∗

(0.09) (0.08) (0.07) (0.07)
North of canal × 1930 0.41∗∗∗ 0.41∗∗∗ 0.40∗∗∗ 0.46∗∗∗

(0.11) (0.09) (0.08) (0.08)
North of canal × 1937 0.78∗∗∗ 0.76∗∗∗ 0.75∗∗∗ 0.76∗∗∗

(0.10) (0.09) (0.08) (0.08)
North of canal × 1945 0.77∗∗∗ 0.76∗∗∗ 0.74∗∗∗ 0.72∗∗∗

(0.10) (0.08) (0.08) (0.07)

Tract FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 3792 5072 6320 7568

Data on historical land development come from Dutch colonial maps. The West Flood Canal was
completed in 1918 and protected neighborhoods to its north, but not to its south. The dependent
variable is land development, and each observation is a 100m cell. The optimal bandwidth is 500m.
Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Figure B4: Validating the spatial regression discontinuity design

(a) Elevation
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(b) Flood frequency (2013-2020)
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 Linear prediction (south side)  Linear prediction (north side)Data on historical land development come from Dutch colonial maps. The West Flood Canal was

completed in 1918 and protected neighborhoods to its north (positive distances), but not to its south
(negative distances). Each observation is a 100m cell. The x-axis measures distance to the West
Flood Canal in meters, and 500m is the optimal bandwidth.
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Table B5: Flooding, land prices, and building construction

(a) Land price ($/m2)

Flooding (m/year) -2.31*** -1.29*** -0.59** -0.93***
(3.00) (3.12) (2.15) (2.78)

District FE x
Sub-district FE x
Neighborhood FE x
Observations 2,722 2,722 2,722 2,722

(b) Building construction (m3)

Land price ($/m2) 0.21*** 0.27*** 0.37*** 0.30***
(0.03) (0.03) (0.05) (0.05)

District FE x
Sub-district FE x
Neighborhood FE x
Observations 2,722 2,722 2,722 2,722

Each observation is a tract, and each column is a regression. Flooding is as observed from 2013 to
2020, land prices are from the Jakarta Smart City initiative for 2015, and building construction is
from the Global Human Settlement Layer for 2015. *** p < 0.01, ** p < 0.05, * p < 0.1.

data. The advantage of the modern data is that they capture real estate prices as a

mechanism for this relationship, as well as development on the intensive margin.

Other potential concerns remain. First, the government may have anticipated

future land development when placing the canal. But it seems difficult to target

development 30 years in the future, particularly at the level of 100m cells. Second,

flooding may not be the only driver of post-canal land development. For example,

the north is closer to the fast-growing city center. But I restrict attention around

the boundary, which minimizes differences in proximity, and I show the absence of

pre-canal differences in growth. The canal itself imposes a physical barrier between

north and south, but 15 crossings minimize this barrier over the 10km stretch of canal

that I study. Finally, the canal may facilitate other forms of government interven-

tion by establishing clear boundaries for favored neighborhoods. Such effects remain

consistent with the theory, which only requires that government intervention increase

residential value.
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C Estimation

Residential choice with costly migration

For an individual i in origin j considering destination k, utility is

uijk = αrk + ϕfk + xkγ + εk︸ ︷︷ ︸
µk

+ τmjk + ϵijk

for migration distance mjk. Logit shocks give choice probabilities

ρjk =
exp(µk − τmjk)∑
ℓ exp(µℓ − τmjℓ)

.

If residents are not perfectly mobile, such that τ > 0, then estimation follows Berry

et al. (1995). The only difference is that I integrate over origins, rather than over

a broader set of demographics. This approach avoids the need to measure bilateral

migration flows, which is often difficult in granular settings. I estimate θ = (θ1, θ2)

for θ1 = (α, ϕ, γ) and θ2 = τ .

First, fixing θ2, I match observed and model-implied populations by computing

mean utilities µ = {µk} by contraction mapping. Model-implied destination popula-

tions are

nk =
∑
j

njρjk(µ, θ2),

where computing the right-hand side requires integrating over origin populations nj.

Second, I regress µ̂ on data (r, f, x) to obtain estimates θ̂1 and residuals ε̂.

µk = αrk + ϕfk + xkγ + εk

Third, I compute the GMM objective function with instruments Z, weighting matrix

W , and sample analog g(ε(θ)) =
∑

k Zkεk(θ) of moment condition E[Zε(θ)] = 0.

Q(θ) = g(ε(θ))′Wg(ε(θ))

Fourth, I search over θ2 to minimize Q(θ).
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θ̂2 = argmin
θ2

Q(θ1(θ2), θ2)

Empirically, I read destination populations from 2020 data and origin populations

from 2015 data. Estimation matches changes from 2015 to 2020 in the distribution of

population across space. Uniform population growth rate λ = (
∑

k n
2020
k )/(

∑
j n

2015
j )

augments 2015 populations, such that origin and destination populations balance.

Individuals originating at the periphery face distance m0k to destination k, where I

define m0k as the minimum distance from k to the core-periphery border.

Euler conditional choice probabilities

The Euler approach compares development in period t to development in period

t+ 1. This derivation follows Hsiao (2024a). The goal is to estimate

ln δkt − ln(1− δkt) = V̂ 1
kt − Ṽ 0

kt.

The elements on the right-hand side include continuation values, and I derive expres-

sions that instead express these elements in terms of observed data.

V̂ 1
kt =

1

2
ωh2

kt − ϕfkt − xktγ − εkt,

Ṽ 0
kt = βE[V 0

kt+1] = βE[V̂ 1
kt+1 − ln δkt+1]

The first line is as in the main text. It follows from the first order condition for

building height hkt and cost equation 11. Logit shocks give the second line as a

special case of Arcidiacono and Miller (2011) Lemma 1. Substituting,

ln δkt − ln(1− δkt)− βE[ln δkt+1] =
1

2
ω(h2

kt − βE[h2
kt+1])− ϕ(fkt − βE[fkt+1])

− (xkt − βE[xkt+1])γ − (εkt − βE[εkt+1]).

By rational expectations, E[Xkt+1] = Xkt + ηXkt for expectational error ηXkt, which is

orthogonal to Xkt. Denoting ∆Xkt = Xkt − βXkt+1, I obtain an estimating equation.

∆ ln δkt − ln(1− δkt) =
1

2
ω∆h2

kt − ϕ∆fkt −∆xktγ −∆εkt + ηkt
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Hydrological model of flooding

I use machine learning to model flood risk for Jakarta. Flooding models fall in

two broad categories: physical and data-driven. The first explicitly models physical

processes like rainfall, runoff, hydraulics, and flow dynamics, while the second fits

historical data with statistical methods like linear regression, Bayesian models, and

machine learning. Physical models must specify the complex physical processes that

contribute to flooding, while machine-learning methods can detect these complexities

directly from the data. Mosavi et al. (2018) reviews the machine-learning approach

for hydrology.

As model inputs, I use rainfall, elevation, slope, distances to major rivers, dis-

tance to minor rivers, and distance to the coast. Annual rainfall data at a resolution of

4km come from PERSIANN (Precipitation Estimation from Remotely Sensed Infor-

mation using Artificial Neural Networks) for 2013 to 2020. I compute average annual

rainfall. Elevation data at a resolution of 90m come from the Shuttle Radar Topog-

raphy Mission (SRTM) digital elevation model. I calculate slopes from elevation data

by computing slope as the angle of terrain inclination. I compute river and coastal

distances with OpenStreetMap data, which distinguish major rivers from streams.

As model output, I obtain predicted flood frequency. This flooding includes all

sources of flooding – coastal, pluvial, and fluvial – and is net of river water man-

agement infrastructure, which I hold fixed in counterfactuals. I train the model and

evaluate its performance using monthly data from the Regional Disaster Management

Agency on realized flooding from 2013 to 2020. I rasterize these tract-level data to a

resolution of 300m for consistency with demand and supply estimation.

I consider a range of models and choose the one with the best fit. Table C1

presents the results. Ensemble methods like random forests, gradient boosting deci-

sion trees, and histogram gradient boosting decision trees perform best, as measured

by R-squared, mean absolute error, and root mean squared error. As the baseline

model, I choose a histogram gradient boosting decision tree with monotonicity con-

straints on distance to major rivers and elevation. I train this model using the scikit-

learn package in Python, which yields model parameters of 12 for maximum tree

depth, 300 for maximum iterations, and 0.01 for the learning rate. Monotonicity
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Table C1: Comparing models

R2 MAE RMSE

Multiple linear regression 0.027 2.467 3.778
Decision tree 0.225 2.035 3.336
Bagging 0.433 1.676 2.959
Random forest 0.458 1.596 2.797
Gradient boosting decision tree 0.467 1.608 2.800
Histogram GBDT 0.466 1.617 2.796
Histogram GBDT with monotonicity 0.471 1.606 2.827

I compute R-squared, mean absolute error (MAE), and root mean squared error (RMSE) with ten-
fold cross-validation. Monotonicity constraints apply to distance to major rivers and elevation.

Figure C1: Hydrological model fit

(a) Observed (b) Predicted

The figures map observed flood frequency, as measured in months per year from 2013 to 2020, against
the predictions of a machine learning hydrological model.

constraints enforce that fluvial flooding is concentrated near rivers and coastal flood-

ing is concentrated in low-lying areas. These constraints help reduce overfitting by

imposing physical properties, but without the complexity of a full physical model.

Figure C1 shows visual fit. The model performs reasonably well in capturing

the main sources of flood risk in Jakarta. Distance to major rivers and rainfall in

upstream watersheds capture fluvial and pluvial flooding historically, while distance

to the coast and elevation capture growing coastal flooding. Table C2 summarizes
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Table C2: Feature importance

Feature Importance

Annual rainfall 0.590
Distance to major rivers 0.586
Distance to the coast 0.487

Feature Importance

Elevation 0.418
Distance to minor rivers 0.372
Slope 0.174

Permutation feature importance quantifies the dependence of model fit on a given feature. The table
presents this measure for a histogram gradient boosting decision tree with monotonicity constraints
on distance to major rivers and elevation.

feature importance as another means of evaluating the model. I compute permutation

feature importance for individual features by shuffling them – adding random noise

to their values – and measuring the resulting declines in model fit. The results are

sensible, with rainfall, distance to major rivers, and distance to the coast being of

primary importance, and distance to minor rivers and slope being less pivotal.

I simulate sea wall construction, sea level rise, and land subsidence by manip-

ulating elevation and computing predicted changes in flooding. I thus benefit from

large, observed variation in elevation across Jakarta, while avoiding the need for more

complex models of flooding. For sea wall construction, I raise the elevation of Jakarta

uniformly by the height of the sea wall. A sea wall thus benefits areas both above

and below sea level, as well as both within and beyond the flood zone. Indeed, a

sea wall reduces inundation for areas below sea level, as well as storm-surge risk for

areas above sea level. Similarly, a sea wall prevents ruin and its spillovers, offering

direct benefits within the flood zone, as well as indirect benefits beyond the flood

zone. Since elevation is relative to sea level, I simply treat sea level rise as lowering

elevation uniformly and land subsidence as lowering elevation heterogeneously.

D Counterfactuals

D.1 Solving the model

Consider one period and K locations. Residents choose across locations, and

developers invest within locations. I distinguish coastal dco = {dco,k} from inland
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din = {din,k}, as defense protects the coast. Defense maximizes social welfare.

g∗(d) = argmax
g

{∑
k

wk(g; d)

}

Development does not internalize public costs. With commitment, defense is fixed.

Development d = {dk} satisfies market-clearing conditions across locations, with K

equations in K unknowns. Without commitment, defense responds to development.

Development anticipates this response to force added defense.

d∗(g) = argmax
d

{∑
k

πk(d; g)

}
= {dk |P res

k (d; g) = P dev
k (dk)}

dN = argmax
d

{∑
k

πk(d, g
∗(d))

}

Spatial demand introduces computational complexity, as residential value in one

location depends on development across locations. I simplify computation in three

ways. First, I use gridded interpolation to avoid solving for g∗(d) at each iteration.

Second, I apply that defense is coastal to simplify the interpolation grid. Coastal

development drives the returns to defense, while inland development enters only

through its second-order effect on coastal prices. Thus, g∗(d) is well approximated by

g∗(dco; din), where I arbitrarily set din = d∗
in. Third, I apply that defense is coastal to

simplify solving for development. If inland development does not affect defense, then

it satisfies market-clearing conditions that can be solved quickly.

dNin(dco) = {dk |P res
k (din; dco, g

∗(dco)) = P dev
k (dk)}

Thus, I can solve over coastal locations rather than all locations.

dNco(din) = argmax
dco

{∑
k

πk(dco, g
∗(dco); din)

}

I then solve for coastal and inland development as a fixed point.

dNco(din) = dco, dNin(dco) = din
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I apply the same fixed-point strategy when solving over coastal locations. For coastal

locations (d1, d2) as an example, I solve for each holding the other fixed. I then solve

for the fixed point given by dN1 (d2) = d1 and dN2 (d1) = d2.

Now consider T periods and K locations, with development dt = {dt, . . . , dT}
over time, dt = {dkt} over space, and defense gt = {gt, . . . , gT} over time. Defense

maximizes social welfare, but development does not internalize public costs. With

commitment, defense is fixed. Development satisfies market-clearing conditions in

expectation with KT equations in KT unknowns for k ∈ [1, K] and t′ ∈ [t, T ].

g∗t(dt) = argmax
gt

Et[Wt(g
t; dt)],

d∗t(gt) = argmax
dt

Et[Πt(d
t; gt)] = {dkt′ |Et[P

res
kt′ (d

t; gt)] = Et[P
dev
kt′ (dkt′)]}

Without commitment, defense responds to development, and development antic-

ipates this response. I solve by backward induction. Period T depends on stocks of

past development and defense. For social welfare Wt and coastal welfare Πt,

gNT (dT , DGT−1) = argmax
gT

WT (gT ; dT , DGT−1),

dNT (DGT−1) = argmax
dT

ΠT (dT , g
N
T (dT );DGT−1),

with shorthand DGt = (Dt, Gt) and stocks Dt = Dt−1 + dt and Gt = Gt−1 + gt. I

solve as in the one-period case. Period T − 1 then anticipates period T .

gNT−1(dT−1) = argmax
gT−1

ET−1[WT−1(gT−1, d
N
T (gT−1), g

N
T (gT−1); dT−1)],

dNT−1 = argmax
dT−1

ET−1[ΠT−1(dT−1, g
N
T−1(dT−1), d

N
T (dT−1), g

N
T (dT−1))],

suppressing dependence on stocks DGT−2. Period T − 1 affects stocks DGT−1 and

thus period T . Earlier periods proceed similarly.
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D.2 Development

Figure D1: Coastal development over time

(a) Commitment (b) Partial commitment (c) Political myopia

(d) Inland investment (e) Subsidence control (f) Coastal regulation

Coastal development is new development activity over time in North Jakarta. I normalize by dividing
by full-commitment development in 2050. Each curve is one counterfactual. Full commitment
chooses defense upfront and adheres to the plan. No commitment chooses defense in a sequential
static manner. Zero defense eliminates coastal defense. Limited commitment is full commitment in
2050, then no commitment. Delayed commitment is no commitment in 2050, then full commitment.
Under political myopia, governments that act with commitment internalize their own costs of defense
but not future costs of defense, which fall instead on future governments. Integrated policy combines
coastal defense with inland investment that reduces coastal demand by 25%, subsidence control
that slows land subsidence by 25%, or coastal regulation that imposes 25% of the Pigouvian tax.
Background lines reproduce the top left figure.
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D.3 Defense

Figure D2: Coastal defense over time

(a) Commitment (b) Forward commitment (c) Myopic commitment

(d) Inland investment (e) Subsidence control (f) Coastal regulation

Coastal defense is new defense activity over time in North Jakarta. I normalize by dividing by full-
commitment defense in 2050. Each curve is one counterfactual. Full commitment chooses defense
upfront and adheres to the plan. No commitment chooses defense in a sequential static manner.
Zero defense eliminates coastal defense. Limited commitment is full commitment in 2050, then
no commitment. Delayed commitment is no commitment in 2050, then full commitment. Under
political myopia, governments that act with commitment internalize their own costs of defense but
not future costs of defense, which fall instead on future governments. Integrated policy combines
coastal defense with inland investment that reduces coastal demand by 25%, subsidence control
that slows land subsidence by 25%, or coastal regulation that imposes 25% of the Pigouvian tax.
Background lines reproduce the top left figure.
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D.4 Robustness

Table D1 considers robustness. Greater discounting reduces the impact of moral

hazard over time. More elastic demand and supply increase moral hazard as devel-

opment responds more strongly to defense. The terminal year makes little difference

given discounting. Shorter timing intervals imply more frequent defense and thus

more opportunity for moral hazard.

Table D1: Robustness

Coastal Coastal Social
development defense welfare

(2050) (2050) (NPV)

Commitment: Full No Full No Full No

Baseline 1.00 1.62 1.00 1.34 14.73 -4.66

Discounting
β = 0.93 0.93 1.44 0.96 1.24 6.21 -2.41
β = 0.97 1.09 1.88 1.05 1.48 33.96 -18.55

Demand
Price elasticity -25% 0.93 1.45 0.96 1.24 12.50 -0.29
Price elasticity +25% 1.08 1.87 1.05 1.47 17.53 -15.46
Flooding elasticity -25% 1.05 1.86 1.08 1.54 13.91 -21.22
Flooding elasticity +25% 0.91 1.31 0.86 1.05 17.18 10.13

Supply
Price elasticity -25% 0.95 1.52 0.97 1.28 13.90 -3.58
Price elasticity +25% 1.06 1.74 1.03 1.40 15.64 -6.01

Horizon
Year 2750 1.00 1.62 1.00 1.34 14.99 -5.11
Year 2300 1.00 1.62 1.00 1.34 15.00 -5.14

Timing
30-year intervals 1.08 1.88 1.05 1.48 36.40 -23.51
40-year intervals 1.04 1.74 1.02 1.40 22.82 -10.23

Coastal development and defense are new development and defense activity in North Jakarta in 2050.
I normalize each by dividing by baseline full-commitment outcomes in 2050. Social welfare is a net
present value measured in 1B USD with 2015 dollars, relative to the baseline zero-defense scenario.
Each row is two counterfactuals: one under full commitment and one under no commitment. Full
commitment chooses defense upfront and adheres to the plan. No commitment chooses defense in a
sequential static manner.
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D.5 Extensions

Table D2 considers extensions. Political lobbying increases the benefit of devel-

opment by 25% beyond that relevant for social welfare maximization. Moral hazard

worsens as defense becomes more responsive to development. Uncertain flooding in-

volves expectations over a path of future flood risk that varies uniformly from 25%

smaller to 25% greater than baseline. Moral hazard worsens as convexity in flood risk

makes the expected value worse than the certainty equivalent. Endogenous amenities

allow inland amenities to improve as residents migrate inland. I take the distribution

of amenities with respect to population as given, then I adjust amenities according to

this distribution as migration changes populations in counterfactuals. Moral hazard

worsens as the benefit of inland retreat improves. Depreciating development reduces

the development stock by 25% each period. Moral hazard worsens as defense becomes

more responsive to new development.

Table D2: Extensions

Coastal Coastal Social
development defense welfare

(2050) (2050) (NPV)

Commitment: Full No Full No Full No

Baseline 1.00 1.62 1.00 1.34 14.73 -4.66

Political lobbying 1.16 1.96 1.09 1.52 17.19 -8.69
Uncertain flooding 1.01 1.69 1.01 1.38 15.02 -13.78
Endogenous amenities 1.29 2.25 1.16 1.68 19.01 -12.56
Depreciating development 0.86 1.84 0.93 1.46 8.32 -20.02

Coastal development and defense are new development and defense activity in North Jakarta in 2050.
I normalize each by dividing by baseline full-commitment outcomes in 2050. Social welfare is a net
present value measured in 1B USD with 2015 dollars, relative to the baseline zero-defense scenario.
Each row is two counterfactuals: one under full commitment and one under no commitment. Full
commitment chooses defense upfront and adheres to the plan. No commitment chooses defense in a
sequential static manner.
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