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reduce emissions by 5.4 Gt over the same period. The cost of these import tariffs is

only $15 per ton of CO2, even accounting for compensating transfers that recognize
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1 Introduction

Carbon emissions have global consequences. The international community may

therefore wish to intervene when domestic regulation fails. Indeed, free-riding in-

centives, political constraints, administrative limits, and potential corruption each

undermine domestic regulation (Oates and Portney 2003, Burgess et al. 2012, Oliva

2015). The conventional approach attempts to address these difficulties, such as by

improving enforcement (Duflo et al. 2018), but doing so at scale can be infeasible.

Trade policy offers an alternative, circumventing these obstacles by targeting the

prices that carbon emitters receive in world markets.

How effective is trade policy as a substitute for direct regulation? I develop a

dynamic empirical framework to answer this question quantitatively. I highlight two

challenges: (1) a coordination problem because of leakage to unregulated markets and

(2) a commitment problem because regulation is not statically optimal once emissions

are sunk.1 I apply this framework to studying the palm oil industry, which accounts

for 5% of global CO2 emissions from 1990 to 2016 (figure 1). By comparison, the

European Union (EU) accounts for 11% and Russia for 6% over the same period.

Palm oil is an important empirical setting. The industry is a major polluter: land

clearing for palm oil plantations threatens carbon-rich peatland forests in Indonesia

and Malaysia, which together account for 84% of global palm oil production. At the

same time, the industry generates substantial domestic profits that have lifted millions

out of poverty (Edwards 2019). This paper informs an active debate on whether

foreign governments should intervene with trade policy. The leading example is the

EU Regulation on Deforestation-free products (EUDR), which will soon restrict EU

imports of palm oil (OJEU 2023). I quantify emission reductions under such trade

policy intervention, as well as the losses that Indonesia and Malaysia might claim as

payment for ecosystem services.

I characterize palm oil demand with an almost ideal demand system (Deaton and

Muellbauer 1980) and annual panel data on vegetable oil consumption by consumer

market. The model explicitly captures substitution between palm oil and other veg-

1 “Leakage” arises under incomplete regulation. Regulation reduces consumption in regulated mar-
kets. But in doing so, regulation also reduces world prices and raises consumption in unregulated
markets. This response of unregulated markets attenuates the net effect on global consumption.
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etable oils in response to price changes. Demand estimation applies iterated linear

least squares, as in Blundell and Robin (1999). Prices are endogenous. I instrument

for palm oil prices with weather shocks to palm oil production, and I instrument

for other vegetable oil prices with weather shocks to other vegetable oil production.

These instruments act as supply shifters. I estimate palm oil demand elasticities of 0.7

to 0.9, which indicate relatively inelastic demand for this staple food product. These

estimates determine the losses from non-coordination, as leakage is exacerbated by

elastic demand in unregulated markets.

I characterize palm oil supply with a dynamic discrete-continuous choice model

and granular satellite data on palm oil production over time and space. The model

explicitly captures differential responses to long- and short-run price changes. In

the model, forward-looking firms invest in mills and plantations to produce palm oil

for sale in world markets. I consider two margins of investment. On the extensive

margin, firms make a discrete choice to build a mill or not. On the intensive margin,

firms make a continuous choice over how much land to deforest and develop into

plantations. Deforestation releases carbon emissions.

Supply estimation combines the continuous and discrete Euler methods of Hall

(1978) and Scott (2013). Continuation values difference out, and estimation simplifies

to linear regression with instruments. That is, I estimate the model without solving

it. For identification, I combine variation in world prices over time with variation in

yields across space. Revenues are the product of prices and yields. Thus, if supply

is elastic, then high-yield plantations respond more strongly to prices than low-yield

plantations. If supply is instead inelastic, then high- and low-yield plantations have

similarly muted responses. Prices are again endogenous. I instrument for palm oil

prices with total vegetable oil consumption and weather shocks to other vegetable oil

production. These instruments act as demand shifters. Total consumption raises the

category budget for vegetable oils overall, and weather shocks affect residual demand

for palm oil. I estimate palm oil supply elasticities of 2.9 in the long run and 1.3

in the short run, reflecting that firms respond weakly to temporary price changes.

These estimates determine the losses from non-commitment, as temporary regulation

induces temporary price changes with limited effects.

For counterfactuals, I quantify the global impacts of regulation. I simulate direct

regulation with production taxes, as well as trade policy with import tariffs, export
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taxes, and a carbon border adjustment mechanism. For each policy, I solve the model

for equilibrium prices, production, and consumption. Emissions depend on the spatial

distribution of plantation development, which I model, and carbon stocks, which I

observe. Welfare in each market is the sum of consumer surplus, producer surplus,

and government revenue. For a given social cost of carbon, global social welfare is

the sum of welfare across markets and the value of global emission reductions. I

find that a palm oil production tax of 50% can reduce CO2 emissions by 7.4 Gt over

the study period from 1988 to 2016, relative to business as usual. If feasible, this

production tax generates net welfare gains for Indonesia and Malaysia by improving

their terms of trade. By comparison, EU-led import tariffs of similar magnitude can

reduce emissions by 5.4 Gt over the same period. The cost to the EU is only $15 per

ton of CO2, even accounting for compensating transfers that recognize profit losses

for Indonesia and Malaysia.

Import tariffs rely on an EU that can coordinate across importers and commit

to long-run enforcement. Coordination and commitment are difficult. The challenge

with coordination is free-riding in two forms. Import tariffs reduce both global emis-

sions and world prices, such that unregulated importers enjoy double benefits without

bearing the burden of regulation. The challenge with commitment is the temptation

to eliminate import tariffs once emissions are sunk. Present-biased governments may

find it difficult to resist this temptation, seeking short-run gain at long-run cost. I

find that emission reductions are smaller and substantially costlier when either co-

ordination or commitment fails. Neither is independently sufficient for achieving the

largest environmental gains. Both are necessary.

I consider several alternative policies. First, if international coordination fails,

the EU can act unilaterally. Unilateral action can still achieve 1 Gt of abatement over

the study period, although the cost to the EU rises to $50 per ton of CO2. Second,

Indonesia and Malaysia can impose export taxes. Export taxes target the same goods

as import tariffs and thus achieve the same emission reductions. Export taxes require

enforcement only at international ports, unlike direct regulation. And export taxes

have fiscal appeal because they generate government revenue at the expense of foreign

consumers, while also sparing domestic consumers. Third, importers can implement

a carbon border adjustment mechanism, which combines import tariffs with a credit

for domestic regulation. This credit strengthens the fiscal incentive for Indonesia and

3



Malaysia to regulate.

This paper develops a new dynamic empirical framework for assessing green trade

policy. I build on a rich literature that studies environmental regulation and trade,

where free-riding and leakage motivate carbon coalitions (Nordhaus 2015, Böhringer

et al. 2016, Farrokhi and Lashkaripour 2025) and border adjustment taxes (Markusen

1975, Copeland and Taylor 1994, 1995, Hoel 1996, Rauscher 1997, Fowlie 2009, Elliott

et al. 2010, Fowlie et al. 2016, Kortum and Weisbach 2017, 2024), and where trade

policy influences environmental incentives (Shapiro 2021, Harstad 2024). I also build

on a literature studying commitment in environmental regulation (Marsiliani and

Renström 2000, Abrego and Perroni 2002, Helm et al. 2003, Brunner et al. 2012,

Harstad 2020, Acemoglu and Rafey 2023). I quantify the challenges of coordination

and commitment jointly and in an important empirical setting. By focusing on one

industry, I can leverage detailed microdata to capture rich dynamics and fine-grained

spatial heterogeneity.

Methodologically, I build on models of industry dynamics in the tradition of

Hopenhayn (1992) and Ericson and Pakes (1995). I draw on a growing literature,

formalized by Aguirregabiria and Magesan (2013), Scott (2013), and Kalouptsidi et al.

(2021), that develops Euler conditional choice probability methods for estimating

dynamic discrete choice models. Using techniques from Hotz and Miller (1993) and

Arcidiacono and Miller (2011), this literature adapts classic continuous Euler methods

from Hall (1978) and Hansen and Singleton (1982) to the discrete setting. I combine

discrete and continuous Euler techniques to estimate a dynamic discrete-continuous

choice model of entry and investment. Relative to other such models, including

Blevins (2014), Iskhakov et al. (2017), and Murphy (2018), I offer a simple estimation

strategy that is computationally light and straightforward to implement.

More broadly, trade policy enables regulation in otherwise low-regulation envi-

ronments. For deforestation, trade policy does not rely on domestic governments that

are willing and able to enforce regulation, unlike domestic policies (Souza-Rodrigues

2019, Assunção et al. 2023, Araujo et al. 2024, Burgess et al. 2024, Domı́nguez-Iino

2025) or conservation contracting (Harstad 2012, Harstad and Mideksa 2017). Trade

policy also scales readily, unlike direct payments for ecosystem services (Jayachan-

dran et al. 2017, Edwards et al. 2020). I show that trade policy can greatly reduce

emissions in an industry that is crucial in the fight against climate change.

4



2 Background

Palm oil is a major source of global carbon emissions. Production is concen-

trated in Indonesia and Malaysia, where slash-and-burn practices have transformed

the natural landscape. Sweeping plantations emerge from widespread deforestation,

including of the peatland forests prevalent in the region. These forests house vast

amounts of carbon in the form of peat, with layers of decomposing organic matter

that extend as deep as ten meters belowground.2 Palm-driven deforestation is thus

particularly consequential, as it destroys both tree biomass and peat deposits. Figure

1 shows that palm emissions account for more CO2 from 1990 to 2016 than the entire

Indian economy, with peat destruction generating the vast majority of emissions.

Palm oil production begins with the planting of oil palm seedlings, which mature

into trees. These trees bear fruit after three years and continue to do so over a lifespan

of 30 years. Plantations harvest fresh fruit bunches that mills process into palm oil

and palm kernel oil, with further processing by refineries. Roughly 90% of the oil

in palm fruit is extracted from the flesh as palm oil, while the remaining 10% is

extracted from the seed as palm kernel oil. These oils are exported widely. Indonesia

and Malaysia account for 84% of global production and 89% of exports (table 1).

Production is unconcentrated at the firm level, with the largest firm accounting for

only 4% of global production (POA 2017).

Plantations and mills operate in tandem, as unmilled fruit decays within one day

of harvest and is not consumed directly. For industrial plantations, which are 60% of

production, vertical integration links plantations and mills directly. For smallholder

plantations, which are 40% of production, vertical contracting creates similar links.

Smallholders receive investment support from mills, which are nearly all industrial,

in exchange for exclusive contracting (Cramb and McCarthy 2016). Mills exercise

market power in setting contract terms, as smallholders face credit constraints and

crop perishability that limit their bargaining power. Mills thus extract rents from

plantations. If mills extract rents fully, then vertical integration and contracting

coincide.3

2 Converting peatlands to croplands involves draining peatlands and clearing the land with fire.
Even without clearing by fire, unsubmerged peat releases carbon as it decomposes, and dried-out
peat is likely to ignite from slash-and-burn activity in surrounding areas.

3 Indeed, market power over smallholder farmers is common in agricultural value chains (Bergquist

5



Figure 1: Emissions

(a) Global (Gt) (b) Palm (Gt)

Figure 1a compares Indonesian and Malaysian palm oil to the top emitters, accounting for land-use
change. Palm emissions are 5.45% of global emissions from 1990 to 2016. Figure 1b separates palm
emissions from tree biomass and peat deposits. Emissions are in gigatons of CO2.

Consumption takes many forms, as palm oil is among the most widely used

plant products in the world. Its uses range from cooking and baking to cosmetics

and biofuels, and this ubiquity has driven continued growth in palm oil production

and emissions. In 2016, palm oil expenditures were $45 billion and 32% of total

vegetable oil expenditures – more than any other vegetable oil. Substitutes include

coconut, olive, rapeseed, soybean, and sunflower oils, but versatility in use and a low

price point have helped palm oil maintain its market share.4 Firms trade palm oil

in competitive global commodity markets, with the largest firm accounting for only

2% of global consumption (WWF 2016). At the country level, the EU, China, and

India account for 33% of global consumption and 48% of imports, while Indonesia

and Malaysia consume 23% of the world’s palm oil domestically (table 1).

Significant palm emissions motivate regulation, but domestic regulation faces

challenges. Palm oil profits limit incentives to pass regulation, and weak enforcement

hampers regulation that does pass. In 2010, Norway pledged $1 billion to Indonesia in

cash incentives for domestic forest regulation, prompting the Indonesian government

to issue a moratorium on new forest concessions in 2011. But the moratorium had

and Dinerstein 2020, Chatterjee 2023, Rubens 2023, Zavala 2024).
4 For the EU, biofuels have driven an important part of palm oil demand. I abstract from substi-

tution between palm oil and fossil fuels because of EU biofuel targets. For example, 14% of fuel
for transportation must be renewable by 2030. Where binding, these targets prevent increased
fossil fuel use and thus encourage substitution from palm oil to other vegetable oils.
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Table 1: Production, consumption, and trade

Production Exports Consumption Imports

% % % %

Indonesia 44 41 15 0
Malaysia 40 48 8 3
European Union 0 0 12 18
China 0 0 10 15
India 0 0 11 15
Rest of world 16 10 44 49

Each column sums to 100% and covers 1988 to 2016. I pool palm oil and palm kernel oil by volume.

little effect, failing to curb deforestation within existing concessions or otherwise,

including in protected areas (Busch et al. 2015). Some policies even promote palm

oil production rather than restricting it: for transportation, Indonesia and Malaysia

mandate that fossil fuels be blended with palm-based biofuels at rates of 30% and

20%, respectively (USDA 2019a, 2019b).

Consequently, European policymakers have discussed intervening with regula-

tion. The EU is set to eliminate green subsidies for palm-based biofuels, cap pro-

duction, and achieve a complete phase-out by 2030. Palm-based biofuels face the

further loss of green tax incentives in France and an outright ban in Norway. French

parliament debated a “Nutella tax” in 2016, highlighting the copious use of palm oil

in Nutella and other food products. Each policy uses European purchasing power to

target emissions abroad. This paper considers the impacts of such policy.

3 Data

I construct annual panel data on palm oil prices, consumption, and production

from 1988 to 2016. Appendix A details data sources and construction.

3.1 Demand

I measure annual prices and consumption of vegetable oils. The data span the

study period from 1988 to 2016 and cover all major vegetable oils: palm, palm kernel,

coconut, olive, rapeseed, soybean, and sunflower. World price data come from the
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Figure 2: Prices and quantities

(a) Prices ($/t) (b) Quantities (Mt)

World prices are in nominal USD per ton, and world quantities are in megatons. Each aggregates
over palm oil and palm kernel oil.

International Monetary Fund. Palm oil prices derive from forward contract prices at

Bursa Malaysia Derivatives Berhad, which is the primary global exchange market for

palm oil futures. I use consumer price index data from the World Bank to adjust for

inflation and denominate prices in year-2000 dollars. Consumption data by country

come from the USDA Foreign Agricultural Service. I compute total vegetable oil

expenditures from these prices and quantities.

I aggregate along two margins. First, I aggregate countries into four consumer

markets: the EU, China and India, Indonesia and Malaysia, and the rest of the world.

For each consumer market, I compute total quantities and expenditure-weighted aver-

age inflation.5 Second, I aggregate individual vegetable oils into two product groups:

palm oils and other oils. Palm oils include palm oil and palm kernel oil, while other

oils include coconut, olive, rapeseed, soybean, and sunflower oils. For each product

group, I compute total quantities and expenditure-weighted average prices.6 From

here, I will use “palm oil” in reference to the palm oils product group. Figure 2 shows

that palm oil prices have risen over time despite a seven-fold increase in quantities

traded. Concurrent growth in prices and quantities indicates an outward shift of the

aggregate demand curve, and indeed palm oil was adopted widely for use in food

products, consumer goods, and biofuels during this period.

5 For inflation, I aggregate over the countries in each market. I average over the consumer price
index data, weighting by each country’s household final consumption expenditures.

6 For prices, I aggregate over individual oils o within each product group. I use Stone price index
ln pt =

∑
o ωot ln pot for years t, world expenditure shares ωot, and world prices pot.
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3.2 Supply

I measure Indonesian and Malaysian palm oil production by site and year. I

define sites as groupings of plantations and mills, and I treat sites as firms. Sites

choose to invest in plantations and mills, subject to state variables that affect profits.

Choices

I capture plantations and mills with satellite-based measures. The study area

is Sumatra and Kalimantan of Indonesia and all of Malaysia. For plantations, Xu

et al. (2020) use PALSAR and MODIS satellite data to map palm oil plantations

in the study area at 1 km resolution from 2001 to 2016. I extend their measure

back to 1988 with data on tree cover loss as a proxy for plantation development. I

obtain these data from Song et al. (2018), who construct tree cover loss from 1988

to 2016 with Landsat and MODIS satellite data. I estimate the relationship between

tree cover loss and plantation development in the overlapping period from 2001 to

2016, and I find that tree cover loss is strongly predictive of plantation development.

I then apply the estimated relationship to extend the plantation development data

into the non-overlapping period from 1988 to 2000. For mills, data from the World

Resources Institute and the Center for International Forestry Research record palm

oil mill locations for all of Indonesia and Malaysia in 2018. With historical satellite

data from Google Earth, I confirm each location and identify 1,526 mills. I drop the

29 mills that lie outside of the study area.

I use the plantation and mill data to divide the study area into independent plots,

which I call “sites.” Active sites have one mill with nearby plantations. Potential sites

have no mills or plantations, but they represent potential entrants. In the data, the

provinces with the highest density of palm oil production contain one mill per 535

km2 of land area in 2016. I treat this ratio as a target density. For each province,

I obtain site boundaries by k-means clustering on geographic coordinates, where the

number of clusters k is given by land area divided by the target density. I impose

that no cluster contain more than one observed mill and that observed plantations

be assigned to clusters with an observed mill. I obtain 2,050 contiguous sites.

I overlay plantations, mills, and site boundaries to construct a panel by site and

year. I use the plantation data to identify the timing of mill construction by assuming
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Table 2: Site statistics

Variable Mean SD Min Max N

Mill 0.72 0.45 0 1 2,050
Plantations, ha 9,694 12,047 0 165,986 2,050

Yields, t/ha 3.37 0.57 2.01 5.22 2,050
Road distance, km 48 50 0 267 2,050
Port distance, km 191 100 7 468 2,050
Urban distance, km 125 90 0 417 2,050
Tree biomass CO2, t/ha 386 157 26 753 2,050
Peat deposit CO2, t/ha 1,240 2,079 0 16,217 2,050

Each observation is an Indonesian or Malaysian site in year 2016. Plantations are in hectares, and
palm oil yields are in tons per hectare per year. Distances in kilometers are to major roads, major
ports, and administrative cities (Indonesia) or federal territories (Malaysia). Carbon stock densities,
in tons per hectare, include aboveground tree biomass and belowground peat deposits.

that sites build mills alongside their first plantations. I drop the 0.3% of plantations

without mills and the 1% of mills without plantations observed by 2016. I assume

zero exit for both plantations and mills, and indeed exit is limited when observable.

Xu et al. (2020) measure cumulative plantation exit of only 4.6% between 2007 and

2016, perhaps because oil palm is a perennial crop with steady profits once planted.

I compare the cleaned data to government statistics, and I find that the data align

well. Appendix A shows that I match the large growth in plantation area over time,

as well as the distribution of mills across space.

The top rows of table 2 summarize site choices by 2016. Of 2,050 total sites,

72% have an observed mill. The average plantation is large, at nearly 10,000 hectares

in area. Over time, I observe plantation acreage increasing substantially from 2.4

Mha in 1988 to 19.9 Mha in 2016, relative to a study area of 134 Mha. That is, 15%

of total land is developed into palm oil plantations. Roughly half of the study area

is too mountainous for agriculture, and so the proportion of arable land developed

is even higher. At the site level, 2.6% of sites without a mill choose to construct

a new mill in an average year. Sites with a mill choose to develop an average of

464 ha of new plantation each year. Consistent with interior solutions, which I will

assume for estimation, new plantation development is non-zero for 99.6% of site-year

observations and never exceeds the available land area.

10



States

Palm oil profits depend on prices and yields. I use the same palm oil prices

described previously for demand, and I compute palm oil yields over time with an

agronomic model and government statistics. The PALMSIM model of Hoffmann

et al. (2014) predicts potential yields under optimal growing conditions as a function

of exogenous climate conditions.7 I run the model with WorldClim data on solar

radiation and precipitation to obtain potential yields by site. Government statistics

from the Indonesian Ministry of Agriculture and the Malaysian Palm Oil Board record

actual yields by province-year. I calculate yield gaps as one minus the ratio of actual

to potential yields. I assume that sites within a province-year share a common yield

gap, which I multiply by potential yields to obtain actual yields by site-year. Yields

vary across space, reflecting climate conditions that can differ by site. Yields also

vary over time, reflecting technological progress that can differ by province.

I also consider cross-sectional variation in covariates that potentially affect pro-

duction costs. I calculate distance to markets as the sum of Euclidean distances to the

nearest major road, port, and urban area. These distances proxy for transport costs. I

compute carbon stocks from geospatial data on tree biomass and peat deposits (Zarin

et al. 2016, Gumbricht et al. 2017), which allow me to link plantation development

to emissions. Administrative boundaries delineate the four major producing regions:

Sumatra, Kalimantan, Peninsular Malaysia, and East Malaysia.

The bottom rows of table 2 summarize the state variables. Yields are high at

3.37 tons per hectare per year for the average site. Average annual revenues are

therefore $1,840 per hectare at an average price of $546 per ton, among years plotted

in figure 2. Carbon externalities are also large. The average site stores 1,626 tons of

CO2 per hectare, with 386 tons from tree biomass and a much larger 1,240 tons from

peat deposits. Even with recurring revenue, carbon damages outweigh revenues for

any social cost of carbon that exceeds $12 per ton.8 Carbon damages are most severe

for peat-rich sites, where carbon stores can exceed 10,000 tons per hectare.

7 The model includes plant growth and radiation modules, which simulate fresh fruit bunch pro-
duction as the outcome of frond, trunk, root, and flower growth. Hoffmann et al. (2014) validate
the model with observed yields under optimal conditions from 13 sites that span my study area.

8 For discount factor β = 0.9, annual revenue of $1,840 has a net present value of $18,400, ignoring
production costs. For SCC = $12, carbon stores of 1,626 tons imply $19,512 in carbon damages.
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Shifters

For supply shifters, I consider crop yields by vegetable oil. The direct measure for

palm oil combines agronomic modeling and government statistics, but it is difficult to

replicate this approach for every vegetable oil. Thus, I instead construct an indirect

measure that isolates weather shocks to oil crop production. I collect daily rainfall and

temperature data at 0.25◦ resolution from the Global Meteorological Forcing Dataset,

which I combine with crop-specific optimal growing conditions from the FAO Ecocrop

Database, as well as province-specific production from the USDA Foreign Agricultural

Service. For each year, crop, and province, I compute weather shocks as total absolute

deviations from optimal levels during the growing season. Then, for each year and

vegetable oil, I aggregate over crops and provinces while weighting by production.

These weather shocks proxy for yields.

4 Demand

I model consumers that demand palm oil and other vegetable oils. I use iterative

methods for estimation, which simplifies to linear regression with instruments. I

describe demand estimates by consumer market, and I discuss the implications for

coordination.

4.1 Model

Consumers choose between palm and other vegetable oils. I model demand in

product space with an almost ideal demand system, which allows me to capture cross-

product substitution patterns flexibly (Deaton and Muellbauer 1980).9 For markets

k, years t, and vegetable oils o ∈ {1, 2} = {palm, other}, demand is given by

ωokt =
∑
ô

αoôk ln pôt + γ0ok + γ1okt+ δok ln

(
Xkt

Pkt

)
+ εokt , (1)

lnPkt =
1

2

∑
o

∑
ô

αoôk ln pot ln pôt +
∑
o

(γ0ok + γ1okt) ln pot . (2)

9 The characteristic-space approach of Berry et al. (1995) restricts patterns of substitution to
operate through product characteristics. It also requires specifying the product characteristics
that consumers value. But unlike the product-space approach, it is tractable with many products.
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In equation 1, expenditure shares ωokt depend on world prices pot for both palm and

other oils, fixed effects γ0ok and time trends γ1ok that capture unobserved heterogeneity

by market, total vegetable oil expenditures Xkt, price index Pkt, and shocks εokt.

Unobservables accommodate existing tariffs, which in any case are limited.10 Own-

and cross-price coefficients αoôk allow for flexible patterns of substitution. In equation

2, translog price index Pkt aggregates over individual oil prices pot.
11 By definition of

expenditure shares ωokt = qoktpot/Xkt, quantities demanded are

qDokt =
ωoktXkt

pot
. (3)

4.2 Estimation

I estimate the model by iterated linear least squares (Blundell and Robin 1999).

The challenge is that equations 1 and 2 call for nonlinear estimation, as demand

parameters enter nonlinearly through price index Pkt. But for fixed price index values

P 0
kt, equation 1 is a linear regression equation.

ωokt =
∑
ô

αoôk ln pôt + γ0ok + γ1okt+ δok ln

(
Xkt

P 0
kt

)
+ εokt (4)

First, I compute initial price index values lnP 0
kt = lnXkt − lnQkt from data on total

expenditures Xkt and quantities Qkt =
∑

o qokt. Second, I estimate equation 4 taking

these price index values as given. I do so on palm oil expenditure shares alone, noting

that other oil shares are collinear because shares sum to one, and I impose the stan-

dard adding-up, homogeneity, and symmetry restrictions.12 Regression coefficients

identify demand parameters. Third, I use estimated demand parameters to compute

price index values by equation 2. Fourth, I repeat from step two until convergence.

I estimate equation 4 for each market separately. Prices pot are endogenous, as

10 EU tariffs are only 3.8% for crude palm oil (WTO 2023a). Unobservables also absorb physical
trade costs, including shipping costs for palm oil from Indonesia and Malaysia.

11 Price index Pkt depends on market-specific parameters, and so it varies by market even though
world prices pot do not.

12 With more products, estimation can apply seemingly unrelated regression to a system of equations.
Under adding-up,

∑
o αoôk = 0 for all ô,

∑
o γ

0
ok = 1,

∑
o γ

1
ok = 0, and

∑
o δok = 0. It is

automatically satisfied if
∑

o ωokt = 1. Under homogeneity,
∑

ô αoôk = 0 for all o, such that
demand is unaffected by scaling prices and expenditures. Under symmetry, αoôk = αôok for all
o, ô. With two products, imposing homogeneity imposes symmetry and vice versa.
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unobserved shocks εokt affect prices by increasing demand. Thus, I instrument for

prices with crop yields as a supply shifter. I use weather shocks to vegetable oil

production as a measure of yields, as I can construct these shocks for every vegetable

oil.13 Greater shocks correspond to lower yields, which lower supply and increase

prices. The exclusion restriction is that these shocks affect vegetable oil demand

only through their impact on prices, and not through their impact on income or

expenditures more broadly. To this end, I isolate the weather shocks that are most

relevant to vegetable oil production: deviations from optimal weather conditions for

oil crops, specifically in the provinces and states that produce these crops, and only

in the months of the growing season. Appendix B tests for and rules out income and

expenditure effects. Moreover, unobserved shocks εokt may be correlated over time,

and so I account for serial correlation with Newey-West standard errors.

With the estimated parameters, I can compute demand elasticities. I raise palm

oil prices by 1% in each year, holding all else constant. I then compute quantities de-

manded with equations 1, 2, and 3. I report percentage changes in total consumption

over the study period, with standard errors given by the delta method.

4.3 Estimates

Table 3 presents demand parameter estimates. Interpretation is indirect because

equation 1 is specified in expenditure shares and not in quantities. For palm oil, own-

price coefficients α suggest that expenditure shares do not react strongly to prices.

When palm oil prices rise by 1%, EU palm oil expenditure shares rise by only 0.041

percentage points. This modest effect on expenditure shares implies that quantities

fall as prices rise. Intercepts γ0 and time trends γ1 capture observed differences in

palm oil consumption across markets. Indonesia and Malaysia have a large, positive

intercept of 1.060, which rationalizes observed expenditure shares for palm oil that

exceed 90%. Indonesia and Malaysia are major palm oil producers, and these high

expenditure shares for palm oil are consistent with home bias. All markets have

positive time trends, rationalizing rising consumption in spite of rising prices, as in

figure 2. Expenditure coefficients δ govern how consumption responds as expenditures

rise. Other importers shift toward higher palm oil shares, while the remaining markets

13 If I were to restrict demand estimation to palm oil alone, then I could directly apply the detailed
yields that I obtain for palm oil. These yields enter the supply model as yit.
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Table 3: Demand parameters

European Union China/India Other importers Indonesia/Malaysia

θd Estimate SE Estimate SE Estimate SE Estimate SE

α 0.041 (0.030) 0.045 (0.043) -0.001 (0.038) 0.047 (0.032)
γ0 0.082 (0.283) -0.269 (0.294) -0.444* (0.244) 1.060*** (0.188)
γ1 0.004*** (0.001) 0.002 (0.002) 0.004*** (0.001) 0.012*** (0.002)
δ 0.008 (0.028) 0.048 (0.029) 0.061*** (0.022) -0.023 (0.021)

Each pair of columns shows parameters for a consumer market: α11k, γ
0
1k, γ

1
1k, and δ1k. Parameters

for other oils follow from the adding-up, homogeneity, and symmetry restrictions. Demand estima-
tion draws on annual data covering coconut, olive, palm, rapeseed, soybean, and sunflower oils from
1988 to 2016. *** p < 0.01, ** p < 0.05, * p < 0.1.

respond more neutrally.

Table 4 presents demand elasticities for palm oil by consumer market. I estimate

elasticities that are roughly similar across markets and all less than one, such that

demand is relatively inelastic. Inelastic demand reduces leakage concerns and thus

the losses from a failure to coordinate. However, leakage concerns remain as long as

demand is less than perfectly inelastic. Without price instruments, I obtain estimates

with upward bias, particularly for the EU, China, and India. This upward bias arises

because prices are positively correlated with unobserved demand shocks. Appendix B

shows the strong first stage for weather shocks as instruments and presents demand

elasticities for other oils, which I find are similar in magnitude to demand elasticities

for palm oil.

I model demand as static, which simplifies estimation at the cost of potential bias.

The bias can go in either direction. If switching among vegetable oils is a gradual

process that involves new recipes and suppliers, then contemporaneous price responses

will be attenuated. I will underestimate demand elasticities and understate leakage

concerns. If consumers stockpile to take advantage of temporary price drops, then

contemporaneous price responses will be exaggerated. I will overestimate demand

elasticities and overstate leakage concerns. In both cases, the underlying issue is that

estimation relies on annual variation in prices, but consumers may not be responding

to short-run prices. Appendix B evaluates these concerns with price lags and leads,

as well as rolling variation over decadal horizons. I obtain similar estimates across

specifications.
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Table 4: Demand elasticities

IV OLS

Estimate SE Estimate SE

European Union -0.723*** (0.210) -0.209* (0.109)
China/India -0.692*** (0.168) -0.271 (0.763)
Other importers -0.876*** (0.128) -0.521 (0.646)
Indonesia/Malaysia -0.925*** (0.046) -0.905*** (0.151)

Each pair of columns shows own-price elasticities for palm oil by consumer market. I report elas-
ticities of total consumption with respect to a 1% increase in prices from 1988 to 2016. Demand
estimation draws on annual data covering coconut, olive, palm, rapeseed, soybean, and sunflower
oils from 1988 to 2016. IV estimation instruments for prices with weather shocks to vegetable oil
production, while OLS estimation does not. *** p < 0.01, ** p < 0.05, * p < 0.1.

5 Supply

I model producers that supply palm oil by investing in mills and plantations.

World prices clear markets in equilibrium. I use Euler methods for estimation, which

simplifies to linear regression with instruments. I describe supply estimates over the

short and long run, and I discuss the implications for commitment.

5.1 Model

Sites produce palm oil with mills and plantations. These sites are small, inde-

pendent, and forward-looking with rational expectations. Long-lived owners manage

sites without exit or scrappage. I model dynamics explicitly, as I seek to connect

short-run responses in the data to long-run responses in counterfactuals.

Choices and states

Sites i make choices {mit, nit}. In each year t, sites without mills choose whether

to construct a mill, and then sites with a mill choose how much land to develop into

plantations. Mill construction mit is a binary, extensive-margin choice to enter into

production or not, while plantation development nit is a continuous, intensive-margin

choice over the scale of production.

Observed states {Mit, Nit} track choices {mit, nit}. Each is within the control of

16



individual sites. Mill stock Mit and plantation acreage Nit follow laws of motion

Mit+1 =Mit +mit , Nit+3 = Nit+2 + nit .

Plantation acreage Nit tracks mature, fruit-bearing plantations. Newly planted crops

require three years to bear fruit, and so plantation acreage grows with a three-year

lag. Sites face three constraints. First, each site supports no more than one mill, such

thatMit,mit ∈ {0, 1}. Second, sites must develop plantations within their own lands,

such that Nit ∈ [0, Li] and nit ∈ [0, Li − Nit+2] for land area Li. Third, plantations

cannot operate without mills, such that Nit = 0 if Mit = 0.

Observed states {pt, yit, xi, gi} affect choices {mit, nit}. Sites take each as given.

Individual sites are price takers for world palm oil prices pt, where pt = p1t of equations

1 and 2. Yields yit depend on climatic conditions that sites cannot change. These

prices and yields determine revenues. Cost factors xi include distance to markets

and carbon stocks. Distance to markets sums over distances to major roads, ports,

and urban areas, none of which target individual sites.14 I will estimate the extent

to which this distance raises transport costs. Carbon stocks are predetermined and

increase emissions, which sites may or may not internalize. Region gi encodes the four

regions of study – Sumatra, Kalimantan, Peninsular Malaysia, and East Malaysia –

to allow for regional unobserved heterogeneity. Regional boundaries are fixed.

Unobserved states {ῡit, ε̄it, εit} also affect choices {mit, nit}. Mill shocks ῡit are

logit-distributed and IID. Unobserved mill and plantation costs {ε̄it, εit} are more

flexible: they are uncorrelated with each other, but individually can be correlated

across sites and over time. I collect states with the notation

sit = {pt, yit, xi, gi, ε̄it, εit} .

Timing and production

Each year, sites realize state sit and then proceed in two stages. Figure 3 illus-

trates. In the first stage, sites construct mills. Sites with an existing mill do not face

a choice, as sites can support only one mill. If Mit = 1, then mit = 0. Sites otherwise

14 Major roads exclude small roads built for plantations, major ports predate plantations, and major
urban areas exclude palm oil settlements.
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Figure 3: Supply model timeline
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An empty site makes a binary choice to construct a mill or not. If not, then the site faces the same
choice in the next period. If so, then the site makes a continuous choice over how much land to
develop into plantations. The site can then expand its plantation in future years.

face a choice. IfMit = 0, then they realize logit shock ῡit and choose mill construction

mit ∈ {0, 1}. For sites i and years t, the ex-ante value function is

V̄ (sit) = E
[
max
mit

{βV̄ (sit+1), −c̄(sit) + V (0, sit)− ῡit}
∣∣ sit] . (5)

Sites that choose mit = 0 receive next-year value V̄ (sit+1). They do not construct a

mill, and they face the same choice the next year. Sites that choose mit = 1 incur

mill cost c̄(sit) for plantation value V (0, sit), starting from Nit = 0. That is, they

construct a mill and begin to develop plantations, which eventually generate revenues.

The outside option is to never construct a mill, with utility normalized to zero.

In the second stage, sites develop plantations. Sites without an existing or new

mill do not face a choice, as plantations require mills. If Mit +mit = 0, then nit =

0. Sites otherwise face a choice. If Mit + mit = 1, then they choose plantation

development nit. I assume interior solutions nit ∈ (0, Li−Nit+2) for land area Li. For

sites i and years t, the ex-ante value function is

V (Nit, sit) = E
[
max
nit

{
r(Nit, sit)− c(nit, sit) + βV (Nit+1, sit+1)

}
|Nit, sit

]
. (6)

Mature plantations Nit generate revenues r(Nit, sit), while plantation development

nit incurs costs c(nit, sit). Next-year value V (Nit+1, sit+1) captures future profits,

including the option value of future plantation development.
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I specify revenues and costs as follows. For plantations, linear revenues and

convex costs ensure unique optima.

r(Nit, sit) = αptyitNit , c(nit, sit) =

(
γ0g + γ1g t+ xiδ + εit +

1

2
ψnit

)
nit

Revenues reflect prices pt, yields yit, and plantation acreage Nit. Parameter α gov-

erns how strongly development responds to higher revenues.15 Costs depend on fixed

effects γ0g and time trends γ1g that capture unobserved heterogeneity by region, cost

factors xi that capture observed heterogeneity by site, and unobserved costs εit by

site.16 Unobservables accommodate existing regulation, which in any case is limited

and weakly enforced (Busch et al. 2015). Quadratic costs ψ encourage plantation de-

velopment over time, capturing credit constraints and local factor market congestion.

For mills, there are no direct revenues. Costs are

c̄(sit) = γ̄0g + γ̄1g t+ xiδ̄ + ε̄it .

They again depend on fixed effects γ̄0g , time trends γ̄1g , observed costs xi, and un-

observed costs ε̄it that capture regional and site heterogeneity. I interpret costs as

upfront costs.17

Production depends on yields yit and plantation acreage Nit. Quantities supplied

are

qSit = yitNit . (7)

Because of dynamics, quantities in one year depend on states in every year. By the

laws of motion, current acreage Nit is a stock that depends on all past choices. And

by equations 5 and 6, these past choices are forward-looking and in turn depend on

states in every future year. Thus, to solve the model, I will need to specify the full

expected path of states over time. Appendix C details this calculation.

15 It is equivalent to set α = 1, treat revenues as numeraire, and estimate a logit scale parameter.
16 To identify unobserved heterogeneity by site, I must observe multiple choices per site. But multiple

plantation choices are observed only for early sites, and multiple mill choices are ruled out because
sites support only one mill each. I instead estimate regional effects, effectively pooling in the cross
section rather than over time.

17 In practice, costs combine upfront costs, flow costs, and scrap values. Limited exit in the data
suggests that upfront costs are relatively large. If upfront costs were small relative to flow costs
or scrap values, then I would instead observe entry followed by exit at higher rates. Separating
flow costs and scrap values is difficult without additional data.
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Equilibrium

For terminal year T and vegetable oils o ∈ {1, 2} = {palm, other}, a dynamic

competitive equilibrium is defined by prices p∗ = {p∗11, p∗21, . . . , p∗1T , p∗2T} such that:

1. World demand for palm and other oils is given by equations 1, 2, and 3. De-

mand depends on contemporaneous prices {p1t, p2t} and total expenditures Xkt.

Summing over markets k, world demand is Dot(p1t, p2t) =
∑

k q
D
okt(p1t, p2t;Xkt).

2. World supply of palm oil is given by equations 5, 6, and 7. Supply depends

on all prices pT1 = {p11, . . . , p1T} and yields yTi = {yi1, . . . , yiT}. Sites are price

takers individually, but they affect world prices collectively. Summing over sites

i, world supply is S1t(p
T
1 ) =

∑
i q
S
it(p

T
1 ; y

T
i ).

3. World supply of other oils is given inelastically by quantities {S21, . . . , S2T}.18

4. World markets clear. For world demand and supply defined above,

D1t(p1t, p2t) = S1t(p
T
1 ) , D2t(p1t, p2t) = S2t ∀ t. (8)

5.2 Estimation

I use Euler methods to estimate the model without the need to compute contin-

uation values (Hall 1978, Scott 2013). I obtain two linear regression equations that I

stack and estimate jointly. Estimation is straightforward and computationally light.

nit − βnit+1 =
αβ3

ψ
pt+3yit+3 +

β

ψ
γ1g −

1− β

ψ
(γ0g + γ1g t+ xiδ) + µit + ηit (9)

ln

(
πit

1− πit

)
− β lnπit+1 =

1

2
ψn2

it + βγ̄1g − (1− β)(γ̄0g + γ̄1g t+ xiδ̄) + µ̄it + η̄it (10)

The dependent variables include plantation development {nit, nit+1} and conditional

choice probabilities {πit, πit+1}, which are the probabilities of mill construction. The

residuals include structural errors {µit, µ̄it} and expectational errors {ηit, η̄it}, where
structural errors reflect unobserved costs {εit, ε̄it}.

µit = − 1

ψ
εit +

β

ψ
εit+1, µ̄it = −ε̄it + βε̄it+1

18 I can alternatively assume perfectly elastic supply of other oils and treat prices p2t as fixed. It
is more difficult to estimate a model of other oils alongside the present model of palm oil. An
intermediate option is to calibrate the elasticity of supply of other oils.
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Regression coefficients identify supply parameters. The coefficients of equation 9

identify parameters {α
ψ
,
γ0g
ψ
,
γ1g
ψ
, δ
ψ
} if discount factor β is known. The discount factor is

not identified, as is typical of dynamic discrete choice models (Magnac and Thesmar

2002), and so I set β = 0.9. The coefficients of equation 10 identify {ψ, γ̄0g , γ̄1g , δ̄},
thereby isolating ψ and giving {α, γ0g , γ1g , δ} in levels. The main parameter of interest

is revenue coefficient α, which captures the elasticity of development with respect

to prices. I note that price and yield variation jointly identify α. That is, I benefit

from granular spatial variation in yields, rather than relying solely on time-series

variation in world prices. Intuitively, high-yield sites benefit more from high prices

than low-yield sites, as revenues reflect both prices and yields. If supply is elastic,

then high-yield sites develop more aggressively than low-yield sites when prices rise.19

I derive the regression equations from Euler equations, which compare investment

in years t and t + 1. Appendix C presents derivations. On the intensive margin, I

differentiate equation 6 with respect to plantation development nit and nit+1. Contin-

uation values align and difference out by the envelope theorem. I obtain equation 9,

which captures an intertemporal trade-off: earlier plantation development nit brings

added revenue pt+3yit+3 and avoids rising cost trends γ1g , while later development nit+1

delays costs (γ0g+γ
1
g t+xiδ) and discounts them. On the extensive margin, I difference

equation 5 with respect to mill construction mit and mit+1. Continuation values align

and difference out by finite dependence, which holds because mill construction and

plantation development are terminal actions that lead to common future states and

payoffs (Arcidiacono and Miller 2011). Whether sites invest in year t or t+1, mills are

operational, and plantations have matured by year t+4. I obtain equation 10, which

also captures a trade-off: earlier mill construction brings added plantation profits,

as embodied by n2
it, while later mill construction delays costs. Conditional choice

probabilities {πit, πit+1} are the probabilities of earlier and later mill construction.

Observed choices capture future payoffs and stand in for continuation values, echoing

the typical intuition for conditional choice probability estimation.

I estimate equation 9 on the sample of sites with a new or existing mill (Mit +

mit = 1). It is these sites that face a plantation development decision. There are three

problems. First, future revenue pt+3yit+3 may be correlated with structural error µit,

19 This high- to low-yield comparison gives identification only in relative terms. But zero-yield sites
offer a natural normalization, as they receive zero benefit from price increases.
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which includes unobserved costs εit. These unobserved costs may contain aggregate

shocks that affect future supply and thus future prices pt+3. The structural error

remains uncorrelated with observed states {yit, xi, gi}, which are site fundamentals.

Second, future revenue is correlated with expectational error ηit. This expectational

error is the difference between unobserved expectations and observed realizations. It

includes E[pt+3yit+3|sit] − pt+3yit+3, which is mechanically correlated with pt+3yit+3.

Third, the structural error is autocorrelated. It is correlated over time because both

µit and µit+1 contain εit+1, and furthermore εit+1 may be correlated across sites.

I address these problems by instrumenting and clustering. For the first problem,

I instrument with demand shifters. In particular, I instrument for pt+3yit+3 with Ztyit,

where Zt includes total vegetable oil consumption and weather shocks to other veg-

etable oil production. Total consumption raises the category budget and thus demand

for palm oil. I focus on total consumption outside of Indonesia and Malaysia, as In-

donesian and Malaysian consumption may not be excluded from palm oil production.

Weather shocks to other oils affect the supply of other oils and thus residual demand

for palm oil. Other oils are produced outside of Indonesia and Malaysia, and so these

weather shocks are foreign and arguably excluded from palm oil production. For the

second problem, I use lagged instruments. Under rational expectations, sites condi-

tion on all information known at time t, such that Ztyit is orthogonal to ηit. For the

third problem, I cluster standard errors by district to accommodate autocorrelation,

at least in some form.

I estimate equation 10 on the sample of sites without mills (Mit = 0). It is

these sites that face a mill construction decision. First, I discuss the choice terms,

which I must compute from data. I compute conditional choice probabilities πit

non-parametrically, smoothing spatially over observed choices with cubic splines in

latitude, longitude, cost factors, and time. I also compute plantation development

nit. I must do so because I estimate equation 10 for sites without mills, but I observe

development only for sites with a mill. I smooth over observed choices, assuming that

unobserved mill and plantation costs are uncorrelated. Second, I discuss the error

terms, which motivate clustering. Structural error µ̄it is uncorrelated with observed

states xi but is correlated over time, and so I cluster standard errors by district. The

structural error is uncorrelated with nit, again assuming that unobserved mill and

plantation costs are uncorrelated. Expectational error η̄it is uncorrelated with xi and

22



Table 5: Supply parameters

Intensive Extensive

θs Unit Estimate SE θ̄s Unit Estimate SE

Revenue Price α 10−8 3.018** (1.479)

Median γ0/α $1K 8.037*** (0.345) γ̄0/α $1M 90.43** (39.88)
Trend γ1/α $1K -0.401*** (0.037) γ̄1/α $1M 1.341*** (0.376)

Cost Distance δ/α $1K 0.001 (0.001) δ̄/α $1M 0.343** (0.165)
Carbon δ/α $1K -0.000** (0.000) δ̄/α $1M 0.002 (0.001)
Convexity ψ/α $1 6.508*** (0.759)

The revenue row is the price coefficient. The cost rows divide cost parameters by the price coefficient,
such that magnitudes are interpretable as inflation-adjusted, year-2000 USD. Costs describe median
costs for sites with observed construction, as well as annual cost trends across regions, costs of
market distance and carbon stocks, and cost convexities. Market distance sums over distances to
major roads, ports, and urban areas, while carbon stocks sum over above- and belowground carbon
stocks. *** p < 0.01, ** p < 0.05, * p < 0.1.

nit by rational expectations.

With the estimated parameters, I can compute supply elasticities. I raise palm

oil prices by 1% over shorter and longer periods within the study period, holding all

else constant. Small price changes within the study period do not affect plantation

development nit or mill construction probabilities πit at the end of the study period,

and so I can read these values from data. I then compute quantities supplied directly

from regression equations 9 and 10, as described in appendix C. I do so instead of

solving the model and computing quantities from equations 5 and 6, which require

specifying expectations beyond the study period. I report percentage changes in total

production over the study period, with standard errors given by the delta method.

5.3 Estimates

Table 5 presents supply parameter estimates, which I compute from regression

coefficients. A positive price coefficient gives an upward-sloping supply curve, and

dividing parameters by this coefficient gives magnitudes in dollar terms. I estimate

relatively high median costs of $8,037 per hectare of plantation and $90.43 million per

mill, with an additional $1,510 per hectare from cost convexity.20 Accounting esti-

20 Estimated convexity is $6.51 per hectare (times 1
2 ), multiplied by an average nit of 464 hectares.
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Figure 4: Supply elasticities

I plot elasticities of total production with respect to a 1% increase in prices from 1988 to the years
shown on the x axis. That is, the small dot marks how total production from 1988 to 2016 responds
to a 1% increase in prices from 1988 to 2001. The large dot marks how total production from 1988
to 2016 responds to a 1% increase in prices from 1988 to 2016. The top curve is computed from IV
estimates, and the bottom curve from OLS estimates. I plot 95% confidence bands.

mates are smaller at $7,000 and $20 million, respectively (Fairhurst and McLaughlin

2009, Man and Baharum 2011). These accounting estimates include planting and

operating costs but abstract from capital and land acquisition, which my estimates

capture. My estimates also capture other lifetime costs, including replanting and

capital replacement, as well as constraints to expansion, including urban boundaries,

that I do not model explicitly. Plantation costs fall by a meaningful 5% of median

costs per year, while mill costs rise by 1.5%. Appendix C presents regional costs.

I find that producers internalize their private transport costs, but not their emis-

sion externalities. Distance from markets increases costs on the extensive margin,

given transport costs from mills to markets. These distance costs are large: an addi-

tional kilometer from a major road, port, or urban area increases mill costs by 0.38%

of median costs. If an additional kilometer of remoteness increases road, port, and

urban distances simultaneously, then mill costs increase by 1.14%. At the same time,

distance to markets has no impact on the intensive margin. Once a mill has been

constructed, plantation development proceeds unhindered. Carbon stocks also have

no impact on production. If anything, carbon stocks decrease costs on the intensive

margin, as forests and peat may proxy for a lack of competing land claims. However,

on both margins, the effects of carbon stocks are small in magnitude.

Figure 4 presents supply elasticities for palm oil. I report elasticities of total
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production over the study period. Dots mark the short- and long-run price changes

that I will consider in counterfactuals. Price changes sustained from 1988 to 2001 give

a short-run elasticity of 1.3, and those from 1988 to 2016 give a long-run elasticity of

2.9. Very short-run price changes from 1988 to 1990 have no effect because I take 1988

as the initial year, and production responds with a three-year lag based on the time

between planting and bearing fruit. My long-run estimate is consistent with those

from the Amazon, where others have estimated long-run price elasticities of 4.1 and

6.3 (Sant’Anna 2024, Araujo et al. 2024). Each far exceeds the Scott (2013) estimate

of 0.3 for the US. Large long-run elasticities highlight the need to commit to long-run

policy, as forward-looking sites consider revenues over time. Without instruments, I

obtain estimates with downward bias. This downward bias arises because revenues

are negatively correlated with the error terms in equation 9. Revenues pt+3yit+3 enter

expectational error ηit negatively, and unobserved costs εit raise prices pt+3 and enter

structural error µit negatively. Appendix C shows the strong first stage for demand

shifters as instruments.

Appendix C also estimates a static version of the model and finds elasticities that

are smaller in magnitude and negative. Static estimation regresses on current prices,

which are noisy measures of future prices. This noise biases estimates toward zero.

Furthermore, investment can slow in response to short-run price spikes if expectations

are mean-reverting, such that high prices today prompt expectations of lower prices

tomorrow. For robustness, appendix C presents additional specifications with disag-

gregated cost factors and alternative basis functions for smoothing. It also evaluates

the potential selection bias from assuming that unobserved mill costs are uncorrelated

with unobserved plantation costs. I obtain similar estimates across specifications.

Euler estimation has important advantages.21 I avoid the need to compute con-

tinuation values, which greatly simplifies computation. Because estimation reduces to

linear regression, I can address endogeneity and autocorrelation concerns with stan-

dard tools. And although I need to assume rational expectations, I do not need to

specify expectations more precisely. I do not need to assume perfect foresight, and

I note that regional terms γ = {γ0g , γ1g , γ̄0g , γ̄1g} accommodate common expectational

bias. By comparison, the full-solution approach requires computing continuation val-

21 Other discrete Euler applications include Diamond et al. (2019), De Groote and Verboven (2019),
Traiberman (2019), and Almagro and Domı́nguez-Iino (2024). Hsiao (2025) develops an alterna-
tive approach with similar advantages, appealing to price data in place of finite dependence.
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ues in every iteration. It also requires explicitly specifying long-run expectations,

which involves stronger assumptions than rational expectations.

At the same time, estimation relies on several assumptions. First, sites consider

investing today or tomorrow. Weak property rights may encourage land grabbing

and bias toward investing today, although regional terms γ help by absorbing some

variation in property rights. Second, sites are independent and atomistic. Otherwise,

finite dependence does not hold: if large sites delay investment, then competitors

respond and alter the evolution of the economy, such that continuation values do not

align. It helps that world production is unconcentrated, with the largest producer

accounting for 4% and the largest ten for 21% (POA 2017). But I must rule out local

spatial interaction, which makes estimation intractable. Third, the age of mills and

plantations does not affect profits. Otherwise, delayed investment affects profits in

all future years, and finite dependence again does not hold.

6 Counterfactuals

I solve the model for counterfactuals, which compare direct regulation with do-

mestic policy to indirect regulation with trade policy. I quantify impacts on emissions,

consumer and producer surplus, and government revenue. I close with general lessons.

6.1 Solving the model

I solve for equilibrium prices and quantities with conditions 8. I set discount

factor β = 0.9, unobservables ε̄it = εit = εokt = 0, and expectational errors η̄it = ηit =

0, and I assume palm oil production in Indonesia and Malaysia is proportional to

global production.22 In solving the model, I compute supply in levels with equations

5 and 6. I do so by specifying long-run expectations and computing continuation

values until terminal year T = 2050. Beyond the study period, I assume linear

22 Indonesia and Malaysia account for 84% of palm oil production during the study period (table 1),
which limits bias from not directly modeling production elsewhere. I treat Indonesia and Malaysia
as representative producers, and I scale their production accordingly. I compute multiplicative
adjustment factors Ωt, such that D1t = S1tΩt, and I apply these adjustments when solving
equilibrium conditions 8. During the study period, I observe world demand D1t and Indonesian
and Malaysian supply S1t. Beyond the study period, I apply Ω2016 = 1.1 based on the last year of
the study period. Alternatively, additive adjustment factors treat palm oil production elsewhere
as fixed, with very similar results in terms of model fit.
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Figure 5: Model fit

(a) Prices ($/t) (b) Quantities (Mt) (c) Emissions (Gt)

I plot equilibrium prices, quantities, and cumulative emissions for palm oil, comparing model-implied
values to observed data from 1988 to 2016. Prices are in nominal USD per ton, quantities in
megatons, and emissions in gigatons of CO2.

growth in palm oil yields and the supply of other oils at the rates observed during

the study period, as well as annual inflation of 2%. I also assume annual growth in

total vegetable oil expenditures Xkt at a rate of λ, such that Xkt+1 = (1 + λ)Xkt. I

interpret λ as expected growth in aggregate demand over time.

I recover demand growth λ by matching the data in levels. Having already

estimated demand and supply parameters θ̂ = {θ̂d, θ̂s}, I choose a candidate value

for λ and solve for equilibrium prices. Intuitively, demand growth affects future

prices, which in turn affect current entry and thus current prices. I repeat to find the

candidate value that best fits the palm oil prices in the data. I obtain λ̂ = 0.105.23

This procedure effectively inverts the model to recover an implied measure of long-

run expectations. I did not need to work with long-run expectations when estimating

parameters θ, as estimation relied instead on equations 9 and 10. These estimating

equations difference out long-run expectations and avoid solving the model, but they

match the data only in changes. I must specify expectations and solve the model to

match the data in levels, as is needed for counterfactuals.

Figure 5 assesses model fit by comparing model-implied values to observed data

during the study period. The model matches the data well, noting that prices are

23 Other long-run expectational assumptions, such as linear growth in palm oil yields, will be con-
founded with this demand growth. But the goal is simply to match the data in levels, rather than
to isolate the precise nature of long-run expectations.
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directly targeted. Prices and quantities are linked by equilibrium conditions 8, and I

match data on each in both levels and trends. Quantities and emissions are linked by

plantation development choices. However, quantities depend on yields, while emis-

sions depend instead on carbon stocks. These values need not align. I miss the

particularly large emission episodes of the late 2000s, but I otherwise capture the

trajectory of emissions over the study period. Counterfactuals will impose regulation

and study changes in outcomes relative to this model-implied baseline.

6.2 Policy evaluation

I evaluate policy in the form of palm oil taxes on the supply side, the demand

side, and both in combination. Domestic regulation imposes production taxes τSgt > 0,

which can vary by producing region gi. Import tariffs and export taxes impose con-

sumption taxes τDkt > 0, which can vary by consumer market k. Carbon border

adjustments combine import tariffs with credits for domestic regulation. For ad val-

orem taxes {τDkt , τSgt}, equilibrium conditions 8 for palm oil become∑
k

qD1kt
(
(1 + τDkt)p1t, p2t

)
=

∑
i

qS1it
(
(1− τSg1)p11, . . . , (1− τSgT )p1T

)
∀ t .

I assess the value of coordination and commitment. I simulate coordination by

applying taxes across regions and markets. Complete regulation across regions pre-

vents supply-side leakage, by which production shifts toward unregulated regions.

Complete regulation across markets prevents demand-side leakage, by which con-

sumption shifts. I simulate commitment by applying taxes over time. Commitment

resists the static incentive to set taxes to zero, given sunk investment and time to

build. This static incentive arises because taxes today are costly, but they do not

prevent emissions. That is, taxes today do not prevent existing development, which

is sunk, or new development, which does not yet produce taxable output.24

24 New development responds only to taxes tomorrow – after time to build has elapsed. But new
development today becomes sunk development tomorrow. Without commitment, taxes tomorrow
are again set to zero. Only commitment to non-zero taxes tomorrow can prevent development
today. I note that these taxes are output taxes. The regulator could instead tax land development
itself by imposing an immediate fine, rather than taxing output over time. But the regulator must
still commit to enforcing the fine, which will be large if it imposes the full cost of emissions. A
large fine may prompt legal challenges and lobbying that complicate commitment to enforcement.
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I quantify impacts on emissions, consumer and producer surplus, and government

revenue. Emissions depend on carbon stock density, which I observe, and the extent

of plantation development, which I model. Surplus and revenue depend on equilib-

rium prices and quantities, which I solve for. I focus on impacts within the study

period from 1988 to 2016, as those beyond the study period depend more heavily on

the expectational assumptions required for solving the model. Consumer surplus is

the compensating variation needed to maintain baseline utility, producer surplus is

revenue net of costs, and government revenue is the product of tax rates, prices, and

quantities. Appendix D provides formal expressions for each. I report welfare effects

for each market as the sum of consumer surplus, producer surplus, and government

revenue. A global social planner evaluates regulation by asking whether the benefits

of emission reductions exceed the costs for welfare across markets.

Several restrictions simplify computation. First, tax rates are announced at the

outset and taken as given. I abstract from the dynamic game between policymakers

and producers. Second, tax rates are constant during an initial commitment period,

then lapse to zero afterwards – as is statically optimal. More complex paths are more

computationally intensive to evaluate and more difficult to administer in practice.

Third, I tax palm oil uniformly. Palm emissions are not uniform, but heterogeneous

taxes would require monitoring production and tracking sales.25 Fourth, plantation

development releases carbon stocks fully. Trees must be cut to make space for plan-

tations, and the peat layer must be cleared to access the underlying soil. Fifth, I

focus on palm emissions. I ignore emissions from demand substitution to other oils

or supply substitution to other deforesting activities. Appendix D argues that the re-

sulting bias is limited: other oils involve limited or non-peat deforestation, and other

deforesting activities are much less profitable than palm oil production.

6.3 Domestic regulation

Domestic regulation taxes production directly. Table 6 simulates production

taxes of 50%. I consider coordinated taxes by Indonesia and Malaysia and unilateral

taxes by either alone, as well as commitment to long-run taxes from 1988 to 2016 and

25 Heterogeneous taxes also require commitment not to “greenwash” palm oil produced with sunk
deforestation. Moreover, uniform taxes avoid reshuffling concerns. Taxing dirty palm oil alone
pushes dirty palm oil to unregulated markets and clean palm oil to regulated markets. With suf-
ficient unregulated demand, the result is pure reallocation and zero decrease in dirty production.
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Table 6: Emissions (Gt), welfare ($1B), and abatement costs ($/t)

τ ∆E ∆WEU ∆WCI ∆WOI ∆WIM ∆W/∆E

% 2016 2001 2016 2001 2016 2001 2016 2001 2016 2001 2016 2001

Production taxes
All exporters 50 -7.4 -0.8 -21 -5.5 -40 -9.0 -74 -22 38 6.7 13 38
Indonesia only 50 -4.7 -0.9 -6.8 -1.7 -12 -2.8 -22 -6.7 13 0.8 5.9 11
Malaysia only 50 -1.7 -0.1 -3.7 -1.2 -6.9 -1.9 -12 -4.7 7.3 0.9 9.2 60

Import tariffs
All importers 100 -5.4 -0.5 8.6 2.1 9.4 1.2 13 5.9 -88 -38 10 60
EU, China, India 100 -2.1 -0.1 -1.6 -0.1 -6.9 -0.6 27 7.8 -32 -11 6.5 29
EU only 100 -0.7 -0.1 -9.7 -1.6 4.9 0.9 9.6 3.5 -13 -6.3 12 53

Each row is one counterfactual. I compute total changes in global emissions and market-specific
welfare from 1988 to 2016, relative to business as usual, for the European Union (EU), China and
India (CI), other importers (OI), and Indonesia and Malaysia (IM). Emissions are in gigatons of
CO2, and welfare is in billions of inflation-adjusted, year-2000 USD. Indonesia and Malaysia are
exporters, and welfare includes consumer surplus, producer surplus, and government revenue. Other
countries are importers, and welfare includes consumer surplus and government revenue. Abatement
costs divide welfare costs, summed across markets, by emission reductions. The units are USD per
ton of CO2. Production taxes of 50% target some or all production, while import tariffs of 100%
target some or all imports. Taxes are upheld from 1988 to 2016 or from 1988 to 2001.

short-run taxes from 1988 to 2001. I find that coordinated, long-run taxes reduce CO2

emissions by 7.4 Gt from 1988 to 2016. The cost to global consumer and producer

surplus, net of government revenue, is $13 per ton of CO2. That is, this policy

improves global social welfare for any social cost of carbon that exceeds $13 per ton.

Unilateral and short-run taxes have smaller effects on emissions. For long-run action,

emissions fall by 4.7 Gt when Indonesia acts alone and by 1.7 Gt when Malaysia

acts alone. Unilateral Malaysian action is prone to leakage, as elastic Indonesian

supply increases rapidly when Malaysian taxes drive up world prices. Unilateral

Indonesian action is more effective, as it pushes production toward Malaysia, where

higher yields increase efficiency. For short-run action, this compositional shift even

leads to slightly larger emission reductions for unilateral Indonesian taxes relative

to coordinated taxes. More efficient production in Malaysia also explains higher

abatement costs for Malaysia-only regulation.

Domestic regulation reduces welfare for the EU, China, India, and other im-

porters. Production taxes raise world prices and lower consumer surplus in these

markets. Losses for other importers are twice as large as losses for China and India,
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Figure 6: Production taxes

(a) Welfare by market ($1B) (b) Indonesia/Malaysia welfare ($1B)

I simulate coordinated, long-run production taxes of increasing intensity by Indonesia and Malaysia.
I plot effects on market-specific welfare and total abatement from 1988 to 2016. Abatement is palm
emission reductions. Welfare is in billions of inflation-adjusted, year-2000 USD, and abatement is in
gigatons of CO2. Welfare for Indonesia and Malaysia includes consumer surplus, producer surplus,
and government revenue. Welfare elsewhere includes consumer surplus.

which in turn are twice as large as losses for the EU. At the same time, production

taxes increase welfare for Indonesia and Malaysia. These countries can manipulate

their terms of trade, as their producer market power allows them to elevate world

prices and raise tax revenue at the expense of foreign consumers. That is, production

taxes simultaneously reduce emissions and raise welfare for Indonesia and Malaysia.

If enforceable, domestic regulation is fiscally appealing even absent international pres-

sures to abate.

Figure 6 plots welfare against abatement for production taxes of varying intensity,

focusing on coordinated, long-run taxes. Figure 6a shows that increasing abatement

also increases welfare losses for the EU, China, India, and other importers, where

consumer surplus falls as world prices rise. Indonesia and Malaysia experience welfare

gains as they exercise market power, with welfare maximized at 9.3 Gt of abatement.

Abatement at this level corresponds to a 60% production tax. Figure 6b shows that

welfare gains for Indonesia and Malaysia come from substantial government revenue,

collected in part from foreign consumers. This revenue offsets consumer surplus losses

from higher prices, as well as producer surplus losses that amount to hundreds of

billions of dollars. Indonesian and Malaysian producers suffer losses that far exceed

Norway’s $1 billion in cash compensation for forest regulation.
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6.4 Import tariffs

Import tariffs tax traded consumption. Table 6 simulates import tariffs of 100%.

I thus match the production taxes above: consumers pay twice the amount that

producers receive when taxing demand at 100%, and the same holds when taxing

supply at 50%. I consider coordinated tariffs by all importers, multilateral tariffs

by an EU-China-India coalition, and unilateral tariffs by the EU alone, as well as

commitment to long-run tariffs from 1988 to 2016, medium-run tariffs from 1988 to

2011, and short-run tariffs from 1988 to 2001. I note that precedents exist for import

tariffs of 100%. For the EU, tariffs of 162% on sugar, 88% on beef, and 62% on

milk aim to protect domestic agriculture, while tariffs of 257% on cigarettes act as

excise duties on harmful goods.26 More broadly, Hsiao et al. (2025) document that

governments commonly use trade policy to intervene in agricultural markets.

I find that coordinated, long-run tariffs reduce CO2 emissions by 5.4 Gt from

1988 to 2016, amounting to 0.19 Gt annually. This reduction is smaller than the

7.4 Gt achieved by production taxes, as import tariffs fail to regulate Indonesian and

Malaysian consumers. But import tariffs still have large effects. Average annual palm

emissions were 1.6 Gt from 1990 to 2016, relative to 5.0 Gt for the US, 5.0 Gt for

China, 3.5 Gt for the EU, and 1.1 Gt for India (figure 1). Coordinated, long-run

tariffs therefore reduce emissions by an amount equal to 17% of Indian emissions

annually. However, unilateral and short-run import tariffs have smaller effects. For

long-run action, emissions fall by 2.1 Gt under an EU-China-India coalition and by

0.7 Gt when the EU acts alone. Each is prone to leakage, as unregulated demand

rises when import tariffs drive down world prices. For short-run action, temporary

tariffs do little to dissuade palm oil production, as producers look toward high prices

in post-tariff years. Emissions fall by no more than 0.5 Gt.

Import tariffs can increase welfare for the EU, China, India, and other importers.

26 For sugar, beef, and milk, I compute ad valorem equivalents by combining non-ad valorem rates
with primary commodity prices for 2020 (WTO 2023a, IMF 2023). I choose 2020 to capture ad
valorem equivalents before the recent inflationary period. For cigarettes, EU legislation requires
that “the overall excise duty on cigarettes shall represent at least 60% of the weighted average
retail selling price of cigarettes released for consumption” since 2014 (OJEU 2011). The European
Commission offers the following sample calculation: a pre-tax price of 0.70 EUR, an excise duty
of 1.80 EUR, and a post-duty 20% VAT of 0.50 EUR together yield a retail price of 3.00 EUR.
The excise duty is 60% of the retail price and 257% of the pre-tax price.

32



These countries can manipulate their terms of trade, as their consumer market power

allows them to lower world prices and raise tax revenue at the expense of foreign pro-

ducers. This market power is strongest when importers act together, as coordinated

tariffs – both long- and short-run – raise welfare for all importers. Smaller tariff coali-

tions have less market power, and so coalition importers suffer welfare losses because

government revenue does not offset the direct consumer surplus losses from import

tariffs. But non-coalition importers still enjoy welfare gains because import tariffs

lead to lower world prices.

At the same time, Indonesia and Malaysia suffer large welfare losses across im-

port tariff scenarios. To this end, I consider compensating transfers in the spirit of

payments for ecosystem services. First, these transfers promote equity. Palm oil

fuels economic development in Indonesia and Malaysia, especially in poor, rural com-

munities. In curbing emissions, these countries forgo local profits for global benefit.

Second, these transfers help to navigate legal and diplomatic concerns. Indonesia and

Malaysia have criticized EU trade policy for palm oil, arguing that it penalizes palm

oil relative to the “like goods” of rapeseed and sunflower oils, which the EU produces

domestically. Transfers act as compensation.

I evaluate import tariffs by imagining the EU as tariff coalition leader, and I

calculate costs for the EU inclusive of the proposed transfers. I suppose transfers are

to the point that all non-EU markets at least weakly prefer EU-led import tariffs to

business as usual. For example, for long-run tariffs by the EU, China, and India in

table 6, the EU itself incurs $1.6B in welfare losses across EU consumer surplus and

government revenue. I additionally consider EU transfers of $32B to Indonesia and

Malaysia as payment for ecosystem services, as well as $6.9B to China and India for

their participation as coalition members. There is no need for a transfer to other

importers, who enjoy a welfare gain of $27B through lower world prices. I then ask

whether emission reductions are large enough to justify EU action. In doing so, I aim

to assess import tariffs with distributional equity in mind, noting that I may overstate

the feasibility of transfers, which are large and international, or conversely the need

for transfers, which ignore that non-EU markets also desire emission reductions.27

27 Indeed, China and India bear 13% of the social costs of carbon. Ricke et al. (2018) construct
country-level social costs of carbon with damage functions derived from historical climate-growth
impacts. For each coalition group of interest, I sum over country-specific estimates, then I average
across damage function specifications. I find that the EU, China and India, other importers, and

33



Figure 7: Import tariffs

(a) EU abatement costs ($/t)
with coordination

(b) EU abatement costs ($/t)
with commitment

I simulate EU-led import tariffs of increasing intensity. EU costs include losses to EU consumer
surplus, net of tariff revenue and compensating transfers to other markets. Abatement is palm
emission reductions. Costs are in inflation-adjusted, year-2000 USD per ton of CO2, and abatement
is in gigatons of CO2. Both are totals from 1988 to 2016. Figure 7a shows long-run tariffs with
coordination among all importers, an EU-China-India coalition, or the EU alone. Figure 7b shows
coordinated tariffs with commitment from 1988 to 2016, 1988 to 2011, or 1988 to 2001.

Figure 7 presents the results. Even accounting for compensating transfers, I find

that EU-led import tariffs reduce CO2 emissions by up to 9.4 Gt from 1988 to 2016

at a cost to the EU of less than $25 per ton of CO2. Abatement at 9.4 Gt calls for

coordinated, long-run import tariffs of 350%, noting that transfers serve as compen-

sation for the welfare losses that these large tariffs impose on Indonesia and Malaysia,

at least in principle. Import tariffs of 100%, as in table 6, reduce emissions by 5.4 Gt

at a cost to the EU of $15 per ton. Palm oil tariffs thus compare favorably to other

means of abatement, including those receiving active EU investment.28 However, the

effectiveness of tariffs relies on coordination and commitment.

Figure 7a plots EU abatement costs for long-run tariffs across levels of coordina-

tion. For a target abatement cost of $25 per ton of CO2, an EU-China-India coalition

achieves only 2.4 Gt of abatement with tariffs of 125%, while the EU itself achieves

only 0.5 Gt with tariffs of 50%. Larger tariffs increase abatement, but at much higher

cost because of leakage. I also note that EU-China-India tariffs are somewhat less

costly at the lowest levels of abatement. At these levels, coordinated tariffs are costlier

Indonesia and Malaysia bear 3%, 13%, 82%, and 2% of the social costs of carbon, respectively.
28 For now, direct air capture costs still far exceed the industry target of $100 per ton (IEA 2022).
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because they are more punitive for Indonesia and Malaysia and thus require larger

compensating transfers. Unilateral tariffs are costlier because they lack the market

power of a larger coalition.

Figure 7b plots EU abatement costs for coordinated tariffs across levels of com-

mitment. For medium-run tariffs upheld from 1988 to 2011, abatement costs remain

below $25 per ton of CO2 until 4.0 Gt of abatement with tariffs of 175%. Costs then

rise convexly with a kink where the tariff coalition’s initial welfare gains, which derive

from market power, turn into welfare losses. At this point, the EU begins compen-

sating transfers to China, India, and other importers to maintain the coalition. For

short-run tariffs, abatement is much costlier. Tariffs upheld from 1988 to 2001 at

350% achieve 1.0 Gt of abatement at a cost of $74 per ton. Forward-looking produc-

ers do not react strongly to short-run tariffs, and so these tariffs impose welfare costs

with little abatement. The initial fall in costs occurs because small, short-run tariffs

are particularly ineffective at inducing abatement.

Comparing figures 7a and 7b, I highlight the importance of commitment. In

particular, I note that unilateral EU tariffs upheld from 1988 to 2016 dominate coor-

dinated tariffs upheld from 1988 to 2001. The former achieves 1 Gt, 1.2 Gt, and 1.3

Gt of abatement at target costs of $50, $75, and $100 per ton of CO2, while the latter

achieves 0 Gt, 1.0 Gt, and 1.3 Gt at the same costs. Even with full coordination

across importers, abatement relies on commitment over the long run. The 14-year

period from 1988 to 2001 is already not especially short, and shorter commitment

would yield even less abatement. Commitment to long-run policy will be difficult,

especially globally. Unilateral EU action may offer a more feasible path forward.

6.5 Export taxes

Export taxes also target traded consumption. They may appeal to Indonesia

and Malaysia for several reasons. First, they allow these countries to exercise market

power and raise tax revenue from foreign consumers. Second, they tax foreign but

not domestic consumers, and so they raise domestic consumer surplus by shielding

domestic consumers from foreign competition. Third, they are implementable with

relatively limited administrative burden. Directly taxing production requires mon-

itoring individual mills and plantations, while taxing exports requires enforcement

only at international ports. Fourth, they are better than import tariffs. Export taxes
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Figure 8: Export taxes

(a) Exporter abatement costs ($/t) (b) EU abatement costs ($/t)

I simulate coordinated, long-run export taxes of increasing intensity by Indonesia and Malaysia. I
compare these export taxes to coordinated, long-run production taxes by Indonesia and Malaysia
and coordinated, long-run import tariffs lead by the EU. Figure 8a shows exporter costs, which
include losses to Indonesian and Malaysian consumer and producer surplus, net of tax revenue and
compensating transfers from the EU. Figure 8b shows EU costs, which include losses to EU consumer
surplus, net of tariff revenue and compensating transfers to Indonesia and Malaysia. Abatement is
palm emission reductions. Costs are in inflation-adjusted, year-2000 USD per ton of CO2, and
abatement is in gigatons of CO2. Both are totals from 1988 to 2016.

by Indonesia and Malaysia and import tariffs by other markets are both aimed at

the same set of goods: those that leave Indonesia and Malaysia for world markets.29

Thus, both impose the same pressures to abate, but only the export taxes generate

government revenue for Indonesia and Malaysia.

Figure 8a plots the costs of abatement for Indonesia and Malaysia. Negative

costs imply that export taxes are welfare-enhancing, rather than welfare-reducing,

for Indonesia and Malaysia. Export taxes reduce foreign consumption, which be-

comes increasingly inelastic as price-sensitive consumers exit. Export taxes also raise

domestic consumption, which becomes increasingly elastic as domestic consumption

reaches satiation. As a result, domestic losses are modest because the burden of ex-

port taxes falls primarily on foreign consumers – the inelastic party. Production taxes

are also welfare-enhancing because of Indonesian and Malaysian market power, but

export taxes avoid taxing domestic consumers and thus are more attractive. Import

tariffs are the least attractive, even with compensating transfers from the EU that

29 Note that symmetry in the sense of Lerner (1936) would instead compare export taxes by a given
market to import tariffs by the same market.
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Figure 9: Carbon border adjustment mechanism

(a) Exporter abatement costs ($/t)
without border adjustment

(b) Exporter abatement cost ($/t)
with border adjustment

I simulate coordinated, long-run production taxes of increasing intensity by Indonesia and Malaysia.
Exporter costs include losses to Indonesian and Malaysian consumer and producer surplus, net of
tax revenue but without compensating transfers from the EU. I study how these costs interact with
coordinated, long-run import tariffs led by the EU, which I simulate at levels of 0%, 10%, and
50%. Abatement is palm emission reductions. Costs are in inflation-adjusted, year-2000 USD per
ton of CO2, and abatement is in gigatons of CO2. Both are totals from 1988 to 2016. Figure 9a
shows import tariffs that do not adjust with domestic regulation. Figure 9b shows a carbon border
adjustment mechanism that combines import tariffs with credits for domestic regulation.

make import tariffs welfare-neutral. Without these compensating transfers, import

tariffs would be welfare-reducing and even less attractive.

Figure 8b illustrates the European perspective. The EU prefers production taxes

to export taxes because Indonesian and Malaysian consumers share in the tax burden

when production is taxed domestically. Export taxes thus imply larger losses for EU

consumer surplus at all levels of abatement. But the EU still prefers export taxes

to import tariffs, which call for large compensating transfers to other markets. It is

better for the EU to accept Indonesian and Malaysian export taxes in place of EU-led

import tariffs, even if these export taxes are less effective than production taxes.

6.6 Carbon border adjustment mechanism

A concern is that EU-led import tariffs may crowd out domestic regulation in

Indonesia and Malaysia. Figure 9a plots the costs of abatement for Indonesia and

Malaysia when they impose production taxes against the backdrop of import tariffs.

Focusing on coordinated, long-run production taxes and coordinated, long-run import
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tariffs, I find that import tariffs raise the domestic costs of production taxes. Absent

import tariffs, Indonesia and Malaysia can exercise market power to draw tax revenue

from foreign consumers. Welfare rises at all levels of abatement, even as emissions

fall. When importers impose tariffs of 10%, production taxes at modest levels lead

to welfare losses for Indonesia and Malaysia. With import tariffs of 50%, production

taxes at all levels lead to welfare losses. The reason is that import tariffs push

the burden of production taxes onto domestic consumers. The intuition is clear

at the extreme: if importers shut down imports by imposing infinite tariffs, then

Indonesia and Malaysia lose their market power as exporters. Production taxes are

then especially costly for Indonesia and Malaysia because these taxes fall solely on

domestic consumers and producers.

A carbon border adjustment mechanism addresses this concern by combining

import tariffs with credits for domestic regulation. Figure 9b shows that this mecha-

nism restores Indonesian and Malaysian welfare gains from taxing production. When

import tariffs fall as production taxes rise, Indonesia and Malaysia maintain market

power and thus the incentive to tax production. When import tariffs fall to zero for

production taxes at high levels, the three curves align on abatement at negative cost.

The EU could also credit export taxes to similar effect, rather than crediting produc-

tion taxes alone. Although the typical carbon border adjustment mechanism would

not credit export taxes, export taxes and production taxes are similarly attractive for

the EU in this setting (figure 8b).

6.7 General lessons

I discuss general lessons for green trade policy. First, a leakage problem arises

from incomplete regulation. Coordinated trade policy can help, but only for traded

goods. For palm oil, Indonesia and Malaysia export 80% of production, and so import

tariffs have wide scope for impact. More broadly, global exports account for 68% of

manufacturing GDP and 51% of agricultural GDP (World Bank 2023, WTO 2023b).

Both export shares are relatively large and indicate a role for trade policy. Among

fossil fuels, global exports range from 54% of crude oil production to 28% for natural

gas to 14% for coal (EIA 2023). Trade policy will be less effective at curbing coal

emissions. The Amazon is another important frontier of deforestation, and Brazilian

exports amount to 46% of soy production but only 14% of beef production (USDA
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2025).30 If soy expansion occurs on land previously deforested for cattle pasture, then

trade policy can still play a role despite limited beef exports.

Second, a commitment problem arises from sunk emissions, which create static

incentives to deregulate. Indeed, emissions are sunk in many sectors, including those

accounting for the majority of traded emissions: agriculture, manufacturing, fossil

fuels, mining, and transportation (Davis et al. 2011, Peters et al. 2011). For agricul-

ture, including palm oil, emissions are sunk upon investment. Once land is cleared,

the forest is gone. For other sectors, emissions are sunk – even if released gradually –

if upfront investment yields low marginal costs. Once an oil well has been identified,

explored, and drilled, extraction is cheap and proceeds to completion. Once older

ships are built, they continue to operate and emit, even if new shipbuilding faces

new regulation (Peters 2024). Committed trade policy helps by imposing long-run

regulation and resisting the temptation to deregulate after emissions are sunk.

Third, trade policy need not be punitive. Compensating transfers can ensure eq-

uity, recognizing the global good that targeted markets provide by curbing emissions.

These transfers act as payment for ecosystem services at global scale. Moreover, tar-

geted markets may have their own fiscal incentives to regulate, even independent of

emission concerns. Market power encourages domestic regulation, and export taxes

avoid targeting domestic consumers. Trade policy can undercut these domestic incen-

tives to regulate, but a carbon border adjustment mechanism restores the incentives.

Fourth, trade policy also faces challenges. Trade policy for palm oil should tax

palm oil in all forms, but palm oil takes many forms indeed. Must a cookie importer

be taxed for the 7 grams of palm oil in a 28-gram chocolate chip cookie? There is

precedent for palm-based biofuels, which EU trade policy already covers: palm oil

repackaged as biofuel remains subject to tariffs. But there is no such precedent in

the cookie domain. Trade policy also faces political obstacles. Coordination and

commitment must navigate complex, dynamic, multilateral bargaining environments.

Palm oil tariffs may lead to trade disputes and escalation that I do not model, although

I compute compensating transfers that acknowledge these frictions.

30 I compute export-to-production ratios for the study period from 1988 to 2016. World Bank data
give global agricultural and manufacturing GDP, WTO data give global total and agricultural
export values, EIA data give global fossil fuel production and export volumes, and USDA data give
Brazilian production and export volumes for cattle and soy. For global manufacturing, I define
manufacturing as non-agriculture. For Brazilian soy, I pool oilseed, oil, and meal by weight.
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7 Conclusion

Trade policy allows the international community to intervene when domestic

policies fail. This paper develops a dynamic empirical framework to quantify the

impacts of such policy. I use the framework to evaluate EU tariffs on imports of palm

oil, a major driver of deforestation and global emissions. I document opportunities

to achieve large emission reductions at low cost. Direct regulation with a production

tax of 50% can reduce CO2 emissions by 7.4 Gt. By comparison, EU import tariffs

of similar magnitude can reduce emissions by 5.4 Gt if coordinated with other im-

porters and upheld over the long run. The cost of these tariffs is only $15 per ton of

CO2, inclusive of compensating transfers to Indonesia and Malaysia as payment for

ecosystem services.

Green trade policy will be an important tool for protecting the vast forests that

remain intact, at least for now. More broadly, international climate action will be

crucial for meeting our global climate targets. But it relies on coordination and

commitment, which are fundamentally difficult. And it imposes economic costs on

lower-income countries that must also prioritize economic growth. How can we make

progress in this increasingly fragmented and unequal world? Future work grounded

in political realities will help to chart the path forward.
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Hoffmann, Munir, A Castañeda-Vera, M van Wijk, et al. Simulating potential growth

and yield of oil palm (Elaeis guineensis) with PALMSIM: Model description, eval-

uation and application. Agricultural Systems, 131:1–10, 2014.

Hopenhayn, Hugo. Entry, exit, and firm dynamics in long run equilibrium.

Econometrica, 60(5):1127–1150, 1992.

Hotz, V. Joseph and R Miller. Conditional choice probabilities and the estimation of

dynamic models. Review of Economic Studies, 60(3):497–529, 1993.

Hsiao, Allan. Sea level rise and urban adaptation in Jakarta. 2025.

Hsiao, Allan, J Moscona, and K Sastry. Food policy in a warming world. 2025.

IndexMundi. Commodity prices, 2019. URL www.indexmundi.com/commodities.

International Energy Agency. Direct air capture: A key technology for net zero. 2022.

International Monetary Fund. Primary commodity prices, 2023. URL www.imf.org/

en/Research/commodity-prices.

Iskhakov, Fedor, T Jørgensen, J Rust, and B Schjerning. The endogenous grid

method for discrete-continuous dynamic choice models with (or without) taste

shocks. Quantitative Economics, 8(2):317–365, 2017.

Jayachandran, Seema, J de Laat, E Lambin, et al. Cash for carbon: A randomized

trial of payments for ecosystem services to reduce deforestation. Science, 357:267–

273, 2017.

Kalouptsidi, Myrto, P Scott, and E Souza-Rodrigues. Linear IV regression estimators

for structural dynamic discrete choice models. Journal of Econometrics, 222(1):

778–804, 2021.

Kortum, Samuel and DWeisbach. The design of border adjustments for carbon prices.

National Tax Journal, 70(2):421–446, 2017.

Kortum, Samuel and D Weisbach. Optimal unilateral carbon policy. 2024.

Lerner, Abba. The symmetry between import and export taxes. Economica, 3(11):

306–313, 1936.

Magnac, Thierry and D Thesmar. Identifying dynamic discrete decision processes.

Econometrica, 70(2):801–816, 2002.

Malaysian Palm Oil Board. Number and capacities of palm oil sectors. 2016.

Malaysian Palm Oil Board. Malaysian oil palm statistics. 2018.

44

www.indexmundi.com/commodi ties
www.imf.org/en/Research/commodity-prices
www.imf.org/en/Research/commodity-prices


Man, Elaine and A Baharum. A qualitative approach of identifying major cost influ-

encing factors in palm oil mills and the relations towards production cost of crude

palm oil. American Journal of Applied Sciences, 8(5):441–446, 2011.

Markusen, James. International externalities and optimal tax structures. Journal of

International Economics, 5:15–29, 1975.

Marsiliani, Laura and T Renström. Time inconsistency in environmental policy: Tax

earmarking as a commitment solution. Economic Journal, 110(462):C123–C138,

2000.

Meijer, Johan, M Huijbregts, K Schotten, and A Schipper. Global patterns of current

and future road infrastructure. Environmental Research Letters, 13(6):064006,

2018.

Murphy, Alvin. A dynamic model of housing supply. American Economic Journal:

Economic Policy, 10(4):243–267, 2018.

National Geospatial-Intelligence Agency. World port index, 2019. URL msi.nga.

mil/Publications/WPI.

Nordhaus, William. Climate clubs: Overcoming free-riding in international climate

policy. American Economic Review, 105(4):1339–1370, 2015.

Oates, Wallace and P Portney. The political economy of environmental policy.

Handbook of Environmental Economics, 1:325–354, 2003.

Official Journal of the EU. Council directive 2011/64/EU of 21 June 2011. 2011.

Official Journal of the EU. Regulation (EU) 2023/1115 of the European Parliament

and of the Council of 31 May 2023. 2023.

Okarda, Beni and P Manalu. Oil palm mills database, 2017. URL doi.org/10.

17528/CIFOR/DATA.00098.

Oliva, Paulina. Environmental regulations and corruption: Automobile emissions in

Mexico City. Journal of Political Economy, 123(3):686–724, 2015.

Palm Oil Analytics. Essential palm oil statistics. 2017.

Peters, Allen. Beached assets? Capital turnover and emissions in shipping. 2024.

Peters, Glen, J Minx, C Weber, and O Edenhofer. Growth in emission transfers via

international trade from 1990 to 2008. Proceedings of the National Academy of

Sciences, 108(21):8903–8908, 2011.

Rauscher, Michael. International Trade, Factor Movements, and the Environment.

Oxford University Press, 1997.

Ricke, Katharine, L Drouet, K Caldeira, and M Tavoni. Country-level social cost of

45

msi.nga.mil/Publications/WPI
msi.nga.mil/Publications/WPI
doi.org/10.17528/CIFOR/DATA.00098
doi.org/10.17528/CIFOR/DATA.00098


carbon. Nature Climate Change, 8:895–900, 2018.

Rubens, Michael. Market structure, oligopsony power, and productivity. American

Economic Review, 113(9):2382–2410, 2023.

Sant’Anna, Marcelo. How green is sugarcane ethanol? Review of Economics and

Statistics, 106(1):202–216, 2024.

Scott, Paul. Dynamic discrete choice estimation of agricultural land use. 2013.

Shapiro, Joseph. The environmental bias of trade policy. Quarterly Journal of

Economics, 136(2):831–886, 2021.

Sheffield, Justin, G Goteti, and E Wood. Development of a 50-year high-resolution

global dataset of meteorological forcings for land surface modeling. Journal of

Climate, 19(13):3088–3111, 2006.

Sofiyuddin, Muhammad, A Rahmanulloh, and S Suyanto. Assessment of profitability

of land use systems in Tanjung Jabung Barat district, Jambi province, Indonesia.

Open Journal of Forestry, 2(4):252–256, 2012.

Song, Xiao-Peng, M Hansen, S Stehman, et al. Global land change from 1982 to 2016.

Nature, 560:639–643, 2018.

Souza-Rodrigues, Eduardo. Deforestation in the Amazon: A unified framework for

estimation and policy analysis. Review of Economic Studies, 86:2713–2744, 2019.

Traiberman, Sharon. Occupations and import competition: Evidence from Denmark.

American Economic Review, 109(12):4260–4301, 2019.

USDA Foreign Agricultural Service. Indonesia biofuels annual report. 2019a.

USDA Foreign Agricultural Service. Malaysia biofuels annual report. 2019b.

USDA Foreign Agricultural Service. International production assessment division

crop calendars, 2021. URL ipad.fas.usda.gov.

USDA Foreign Agricultural Service. Production, supply and distribution online, 2025.

URL apps.fas.usda.gov/psdonline.

Wagstaff, Kiri, C Cardie, S Rogers, and S Schroedl. Constrained k-means clus-

tering with background knowledge. Proceedings of the Eighteenth International

Conference on Machine Learning, 1:577–584, 2001.

Warren, Matthew, K Hergoualc’h, JB Kauffman, et al. An appraisal of Indonesia’s

immense peat carbon stock using national peatland maps: Uncertainties and po-

tential losses from conversion. Carbon Balance and Management, 12:12, 2017.

World Bank. Indonesia database for policy and economic research

(INDO-DAPOER), 2022. URL databank.worldbank.org/source/

46

ipad.fas.usda.gov
apps.fas.usda.gov/psdonline
databank.worldbank.org/source/indonesia-database-for-policy-and-economic-research
databank.worldbank.org/source/indonesia-database-for-policy-and-economic-research


indonesia-database-for-policy-and-economic-research.

World Bank. World Bank open data, 2023. URL data.worldbank.org.

World Port Source. Ports by country, 2020. URL www.worldportsource.com/

countries.php.

World Resources Institute. Universal mill list, 2019. URL data.globalforestwatch.

org/documents/gfw::universal-mill-list.

World Trade Organization. Tariff analysis online, 2023a. URL tao.wto.org.

World Trade Organization. WTO stats, 2023b. URL stats.wto.org.

World Wildlife Fund. Palm oil buyers scorecard: Measuring the progress of palm oil

buyers. 2016.

Xu, Yidi, L Yu, W Li, et al. Annual oil palm plantation maps in Malaysia and

Indonesia from 2001 to 2016. Earth System Science Data, 12:847–867, 2020.

Zarin, Daniel, N Harris, A Baccini, et al. Can carbon emissions from tropical defor-

estation drop by 50% in 5 years? Global Change Biology, 22:1336–1347, 2016.

Zavala, Lucas. Unfair trade? Monopsony power in agricultural value chains. 2024.

47

databank.worldbank.org/source/indonesia-database-for-policy-and-economic-research
databank.worldbank.org/source/indonesia-database-for-policy-and-economic-research
databank.worldbank.org/source/indonesia-database-for-policy-and-economic-research
data.worldbank.org
www.worldportsource.com/ countries.php
www.worldportsource.com/ countries.php
data.globalforest watch.org/documents/gfw::universal-mill-list
data.globalforest watch.org/documents/gfw::universal-mill-list
tao.wto.org
stats.wto.org


ONLINE APPENDIX

A Data

Table A1: Data sources

Source Period Coverage Description

USDA (2025) 1960-2019 World
Annual consumption, production, area
harvested, imports, and exports by
country and oilcrop

IMF (2023), IndexMundi (2019) 1980-2019 World Monthly prices by oilcrop

Sheffield et al. (2006) 1980-2016 World
Daily precipitation and temperature,
28km resolution

USDA (2021), FAO (2025) — World Crop calendars and growing conditions

Xu et al. (2020) 2001-2016
Indonesia,
Malaysia

Palm oil plantations, 100m resolution

Song et al. (2018) 1982-2016 World Land cover change, 5.6km resolution

WRI (2019) 2018
Indonesia,
Malaysia

List of mill coordinates

Okarda and Manalu (2017) 2017 Indonesia List of mill coordinates

GADM (2021) 2018 World GIS maps of administrative boundaries

Fick and Hijmans (2017) 1970-2000 World
Average monthly solar radiation and
precipitation

DJP (2018), World Bank (2022) 1996-2017 Indonesia Annual yields by province

MPOB (2018) 1990-2018 Malaysia Annual yields by state

Meijer et al. (2018) 2018 World Road networks

NGA (2019), WPS (2020) 2019-2020 World Port coordinates

Zarin et al. (2016) 2000 World Aboveground biomass, 30m resolution

Gumbricht et al. (2017) 2011 World Peatland deposits, 231m resolution

Climate Watch (2020) 1990-2016 World CO2 emissions by country
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Figure A1: Plantations, mills, yields, and cost factors

(a) Plantations, 2016 (b) Mills, 2016

(c) Potential palm oil yields (d) Road distance

(e) Port distance (f) Urban distance

(g) Carbon stocks, tree biomass (h) Carbon stocks, peat deposits

I study Sumatra, Kalimantan, Peninsular Malaysia, and East Malaysia, which together total 134
Mha in surface area. Darker blue indicates higher yields, farther distances, and larger carbon stocks.
Urban areas include administrative cities (Indonesia) and federal territories (Malaysia).
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Plantations and mills

Spatial panel data on palm oil plantations from 2001 to 2016 come from Xu

et al. (2020), who construct the data at 100m resolution from Phased Array type

L-band Synthetic Aperture Radar (PALSAR), PALSAR-2, and Moderate Resolution

Imaging Spectroradiometer (MODIS) satellite imagery. The data measure how much

of each tile is covered by palm oil plantations, inclusive of both young and mature

as well as industrial and smallholder plantations. I use midpoints of the upper and

lower bounds in years where bounds are provided and point estimates otherwise.

I aggregate the data to 1km resolution by averaging. As discussed in Xu et al.

(2020), I impose that development is uni-directional, such that plantation area for

each tile is non-decreasing over time. Xu et al. (2020) restrict their attention to

Sumatra, Kalimantan, Peninsular Malaysia, and East Malaysia, and I do the same in

my analysis. These regions cover virtually all palm oil production in Indonesia and

Malaysia during the study period.

I extend the plantations data back to 1988 using data on tree canopy cover from

Song et al. (2018), who analyze satellite imagery from the Advanced Very High Res-

olution Radiometer (AVHRR), MODIS, and Landsat Enhanced Thematic Mapper

Plus (ETM+). These data extend from 1982 to 2016, overlapping the Xu et al.

(2020) data from 2001 to 2016. Focusing on tiles that the Xu et al. (2020) data

identify as having plantations, I estimate the empirical relationship between planta-

tion development and tree cover loss during the period of overlap, and I use these

estimates to impute plantations prior to 2001. For tiles i in years t,

∆Plantation it =
3∑
s=0

βs∆Tree coverit−s + εit ,

where ∆Plantation it is new plantation development and ∆Tree coverit−s terms are

tree cover loss in preceding years. The Song et al. (2018) data are at 5.6km resolu-

tion, so I downscale them to match the 1km resolution of the aggregated Xu et al.

(2020) data. Table A2 shows the resulting estimates. Significant, negative coeffi-

cients indicate that tree cover loss, especially in the preceding two years, is predictive

of plantation development. I take third column, which includes tile fixed effects, as

my preferred specification. For each tile, I combine predicted plantation development
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Table A2: Plantations vs. tree cover (2001-2016)

∆Plantationt ∆Plantationt ∆Plantationt

∆Tree covert -0.00314*** -0.00253*** -0.00261***
(0.000156) (0.000155) (0.000153)

∆Tree covert−1 -0.00524*** -0.00441*** -0.00435***
(0.000192) (0.000191) (0.000190)

∆Tree covert−2 -0.00102*** 0.000203 0.000414**
(0.000194) (0.000193) (0.000193)

∆Tree covert−3 -0.000672*** 6.42e-05 7.27e-05
(0.000162) (0.000161) (0.000160)

Year FE x x x
District FE x
Tile FE x
Observations 9,098,040 9,098,040 9,098,040

Each column is a regression, and each observation is a tile-year. I regress plantation development
on tree canopy cover. *** p < 0.01, ** p < 0.05, * p < 0.1.

with observed levels in 2001 to impute pre-2001 plantations, imposing a minimum of

zero for plantation development. The downscaling of the coarser Song et al. (2018)

implies that the imputed data should not be analyzed below 5.6km resolution, and

indeed my core analysis analyzes aggregated sites and not individual tiles.

Figure A2 plots the resulting data. First, imposing uni-directional development

rules out exit. Limited exit makes this assumption reasonable: Xu et al. (2020)

measure cumulative exit of only 4.6% between 2007 and 2016, noting that exit can

include misclassified oil palm. Second, the tree cover data imply a reasonable pattern

of plantation development pre-2001. Third, I verify the quality of the satellite data,

both observed and imputed, by comparing them to aggregate government estimates

compiled by USDA (2025). The data match well, although the satellite data reveals

modestly higher levels of plantation development in later years.

Spatial data on palm oil mills come from the 2018 Universal Mill List, a joint

effort led by the World Resources Institute and Rainforest Alliance that collects data

from palm oil processors, traders, corporate consumers, and NGOs (WRI 2019). Mills

are geocoded and manually verified by satellite. I combine these data with the 2017

Center for International Forestry Research database, an independent effort that combs

traceability reports for major palm oil processors and also verifies coordinates man-

ually by satellite (Okarda and Manalu 2017). I merge the datasets spatially, match-

4



Figure A2: Total plantations (Mha)

(a) With vs. without exit (b) Observed vs. extended (c) Satellite vs. official data

The left figure imposes no exit, the middle figure extends the plantation data using tree cover data,
and the right figure shows government data. Plantation area is in megahectares.

ing mills within one kilometer of each other, and I validate mills with Landsat and

DigitalGlobe satellite images from Google Earth by identifying nearby plantations,

storage tanks, and effluent ponds. I omit mills in Java, which houses refineries and

administrative offices but few plantations. I correct coordinates where necessary.

I identify 1,526 mills, of which 1,497 lie within the study area. I obtain 1,482

mills that are consistent with the plantation data, as I will describe in the next

section. Table A3 validates the data against official government data from Statistics

Indonesia and the Malaysian Palm Oil Board. Within the study area, I identify 805

establishments that produce palm oil as their main product in the 2017 Indonesian

manufacturing directory (BPS 2017). The Malaysian government data record 453

mills in 2016 (MPOB 2016). My baseline mill data capture a larger number of mills

in Indonesia, where the official directory is constrained to medium and large firms

with complete listing information, but the spatial distribution remains similar. I

match the Malaysian data closely, while also capturing a slightly larger number of

mills in Peninsular Malaysia.

Sites

To divide land into sites, I first compute the maximum number of sites k̄ for each

province: k̄ = max{floor(area/535), number of observed mills}. I use a benchmark

site size of 535 km2, which I obtain as the average of two calculations. The first
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Table A3: Mill counts by region (2016)

Mill data Official data

Indonesia 1,010 805
Sumatra 681 567
Kalimantan 329 238

Malaysia 472 453
Peninsular Malaysia 266 247
East Malaysia 206 206

Total 1,482 1,258

Government data come from Statistics Indonesia and the Malaysian Palm Oil Board.

calculation considers provinces with the highest mill densities observed in the data.

For each province, I compute the mill density at the end of the study period in

2016. The 75th-percentile province has a density of one mill per 453 km2. The

second calculation considers circular sites with radii given by the largest plantation-

mill distances observed in the data. For each province, I compute the average distance

between plantations and their closest mills in 2016. The 75th-percentile province has

a distance of 14 km, and a radius of 14 km gives a circular site size of 617 km2.

Second, I define sites by k-means clustering on geographic coordinates. I ensure

consistency with the plantations and mills observed in 2016 by imposing (1) that

observed mills be assigned to unique sites and (2) that observed plantations be clus-

tered with observed mills. I adapt the constrained k-means clustering algorithm of

Wagstaff et al. (2001). I apply multiple starts because convergence is to local optima.

1. Choose initial cluster centers C1, C2, . . . , Ck.

2. For the m mills observed in the data, move the m closest centers to the mill

coordinates.

3. Assign points to the nearest cluster centers.

4. Update each cluster center by averaging over the points assigned to it.

5. Repeat (2) to (4) until convergence.

6. For clusters without mills but with at least 10 km2 of plantations, reassign all

points to the nearest clusters with mills.

Step (2) ensures consistency with observed mills, and step (6) with observed planta-

tions. Figure A3 maps the resulting 2,050 potential sites.
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Figure A3: Potential sites

Blue shading indicates different potential sites. Orange dots are palm oil mills observed by 2016.

I overlay plantations and mills with the site boundaries to construct a panel of

palm oil investment by site and year. From the panel data on plantations, I compute

plantation area for each site, and I define plantation development as the change in area

each year. From the cross-sectional data on mills, I define mill construction as the first

year in which I observe meaningful plantations. I define the cutoff for “meaningful”

to be 413 hectares, which I choose so that average plantation development in the

year of mill construction is equal to average plantation development in the years

after mill construction. A cutoff of zero hectares would yield little variation on the

extensive margin, as measurement error in the satellite data and classification error

in clustering sites each place small patches of plantations on most sites, even in early

years. Finally, I harmonize the data by dropping plantations without mills and mills

without plantations. I drop 0.3% of plantations and 1% of mills observed in 2016.

Yields

I construct site-level data on palm oil yields over time. First, I compute potential

yields by site using the agronomic PALMSIM model of Hoffmann et al. (2014), which

predicts yields under optimal growing conditions as a function of climate. As inputs,

I use average monthly solar radiation and precipitation data at 1km resolution from

WorldClim. To facilitate computation, I run the PALMSIM model on average climate

measures by site. Figure A4a shows the resulting 30-year yield curve, which starts at
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Figure A4: Potential palm oil yields

(a) Simulated vs. flattened yield curve (b) Potential yield by site

Yield curves are computed from the PALMSIM model (Hoffmann et al. 2014) using site-level average
monthly solar radiation and precipitation from WorldClim. On the left, the gray curve shows the
average output of the PALMSIM model, and the navy blue line flattens the curve to two levels –
“immature” (zero-yield) and “mature” – while maintaining the same average over time. Shaded
areas show standard deviations. On the right, I show the dispersion of (flattened) mature yields
across sites. Yields are in tons per hectare per year.

zero before increasing steeply then declining gradually. Because the data on actual

yields distinguish only between “immature” and “mature” crops, I flatten the curve

to these levels while fixing average yields over time. Figure A4b plots these flat-

tened yields at maturity. The yields are time-invariant because yields under optimal

conditions are an inherent characteristic of the oil palm plant.

Second, I compile data on actual yields by province and year, drawing on govern-

ment statistics from the Indonesian Ministry of Agriculture, the World Bank INDO-

DAPOER database, and the Malaysian Palm Oil Board (DJP 2018, WB 2022, MPOB

2018). Each reports yields for mature crops, omitting immature crops that do not

yet produce fruit. Figure A5a shows that, on average, actual yields are increasing

over time as technology improves, although they fall far short of potential yields in

all provinces and years. Crop age mix also affects yields over time, but two effects

are potentially offsetting: young crops approaching their peak have increasing yields,

while aging crops past their peak have decreasing yields. Across provinces and years,

the average observed annual yield per hectare is 3.3 tons.

Third, I combine these data to compute actual yields yit by site i and year t. I

assume that yit combines yield gaps γmt and potential yields ypi , where yield gaps are
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Figure A5: Actual palm oil yields (t/ha/year)

(a) By province-year (b) By site-year

Figure A5a is annual yields by province (Indonesia) or state (Malaysia) as recorded in government
statistics. Figure A5b is annual yields by site as computed from potential yields by site (PALMSIM)
and actual yields by province (government statistics). Yields are in tons per hectare per year.

fixed across sites within a given province m and year t.

yit = (1− γmt)y
p
i (11)

I observe actual yields ymt by province-year, which aggregate over site-years. That is,

ymt = (
∑

i∈Im yitNit)/(
∑

i∈Im Nit) for plantation acreage Nit. I substitute equation

11 to obtain yield gaps γmt.

γmt = 1− ymt

(∑
i∈Im y

p
iNit∑

i∈Im Nit

)−1

Thus, I can compute yield gaps as a function of observed quantities: actual yields

ymt, potential yields y
p
i , and plantation acreage Nit. I then isolate the underlying

levels and trends of these yield gaps with the specification

γmt = αm + βt+ εmt ,

which also allows me to extrapolate back to 1988 and beyond 2016. I compute fitted

values and substitute into equation 11 to obtain actual yields yit by site-year. Figure

A5b shows the resulting estimates, which combine the uptrend of figure A5a with the

site-level dispersion of figure A4b.
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Figure A6: Plantation development vs. emissions

Emissions are in gigatons of CO2, and plantation development area is in megahectares.

Carbon stocks

I observe carbon stocks over space with data on aboveground tree biomass from

Zarin et al. (2016) and on belowground peat biomass from Gumbricht et al. (2017).

I convert aboveground biomass to carbon with a typical biomass-to-carbon conver-

sion factor of 0.5. I convert belowground biomass with a conversion factor of 65.1

kg C/m3 peat, as in Warren et al. (2017). I convert carbon to CO2 emissions with a

molecular-weight conversion factor of 3.67.31 I treat carbon stocks as predetermined,

but they are not measured before the study period. Tree biomass is measured for the

year 2000, and peat deposits for 2011. The data may therefore miss carbon stocks

destroyed before these years. For tree biomass, I impute 1988 values by combining

the 2000 values with the proportion of tree cover loss between 1988 and 2000, as

measured by Song et al. (2018). For peat deposits, bias is limited because Gumbricht

et al. (2017) rely primarily on precipitation and topography – predetermined features

– to identify wetlands as areas where water is likely to pool because precipitation ex-

ceeds evapotranspiration. MODIS satellite imagery from 2011 then allow the authors

to distinguish between different kinds of wetlands. Indeed, figure A6 shows that the

relationship between plantation development and the resulting emissions is consis-

tent over time. If the data missed peatlands destroyed before 2011, then peatland

emissions would be much smaller for plantation development before 2011.

31 I focus on CO2 emissions because the carbon content of peatlands is well documented and because
they account for 73% of total greenhouse gas emissions during the study period (Climate Watch
2020). Palm oil production also involves the release of methane and nitrous oxide, but precise
estimates of these emissions are not yet well established.
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Table A4: Vegetable oil producers

Oil Producers

Coconut Philippines 52%, Indonesia 33%, India 15%
Olive EU 86%, Tunisia 8%, Turkey 6%
Palm Indonesia 49%, Malaysia 45%, Nigeria 6%
Rapeseed EU 36%, China 27%, Canada 23%, India 14%
Soybean US 44%, Brazil 29%, Argentina 18%, China 8%
Sunflower EU 29%, Russia 23%, Ukraine 23%, Argentina 17%, China 8%

Each row sums to 100% and covers 1988 to 2016. I omit producers below 5% of world production.

Weather shocks to vegetable oil production

Weather data come from the Global Meteorological Forcing Dataset, which records

daily rainfall and average surface temperature from 1988 to 2016 at 0.25◦ resolution.

I use these data to construct annual measures of weather shocks to the production of

coconut, olive, palm, rapeseed, soybean, and sunflower oils over the study period. I

omit cottonseed and peanut oils given a lack of price data and relatively small volumes

at 5% of vegetable oil consumption volume in 2016.

First, I isolate day-tile observations within oil-producing regions and during the

growing season. I define oil-producing regions as countries that account for at least

5% of world production for any of the aforementioned oils during the study period, as

measured by data from the USDA Foreign Agricultural Service. Table A4 lists these

countries for each oil (aggregating EU countries). For Argentina, Brazil, Canada,

China, India, Indonesia, Malaysia, Russia, and the United States, I further consider

subnational regions – namely states and provinces – using data from the USDA and

national government sources. I define country-specific growing seasons for rapeseed,

soybean, and sunflower oils to be as specified in USDA crop calendars (USDA 2021),

and I take the growing season for coconut, olive, and palm oils to be year-round.

Second, I compute crop-specific weather shocks at the year-tile level. For rainfall,

I first aggregate from daily to monthly values for each tile, as daily variation in rainfall

is less detrimental to crop growth than daily variation in temperature. I then compute

shocks as absolute deviations from optimal levels for each crop. The FAO ECOCROP

database records optimal windows by crop for both rainfall and temperature (FAO

2025), and I take the midpoint of these windows as optimal levels. The FAO database
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Table B1: Weather shocks as price instruments

All All Palm Other

Rainfall shocks (100 mm) 0.208*** 0.212*** 0.139*** 0.224***
(0.0318) (0.0279) (0.0326) (0.0320)

Temperature shocks (◦C) 0.297*** 0.308*** 0.687 0.315***
(0.0335) (0.0316) (0.807) (0.0335)

Oil FE x x
Oil-year trend x
Year trend x x
Observations 174 174 29 145
F-statistic 40.78 49.03 10.46 48.68

Each column is a regression, and the outcome variable is log prices. Annual data cover coconut,
olive, palm, rapeseed, soybean, and sunflower oils from 1988 to 2016. Weather shocks are absolute
deviations from optimal conditions during the growing season, aggregated over producing provinces
and states. Oil fixed effects and oil-specific time trends differentiate between palm and other oils.
Newey-West standard errors account for serial correlation. *** p < 0.01, ** p < 0.05, * p < 0.1.

specifies optimal annual rainfall, which I divide by twelve to obtain optimal monthly

rainfall. Having computed monthly deviations from optimal levels for rainfall, as well

as daily deviations for temperature, I aggregate over time to obtain average deviations

by year for each tile.

Third, I aggregate to obtain annual weather shocks by vegetable oil. I average

over tiles for each oil-producing region, and then I average across oil-producing regions

for each oil in proportion to production volumes. I weight by total production over

the study period rather than annual production, which depends on annual weather.

B Demand

Table B1 shows that weather shocks increase world vegetable oil prices in the first

stage. The first two columns pool across oil products, and the last two consider palm

and other oils separately. The instruments remain strong for palm oil despite a smaller

sample size, although imprecise temperature estimates reflect limited temperature

variation in the palm-producing tropics. Table B2 shows that weather shocks do

not have domestic income or expenditure effects, which would violate the exclusion

restriction by influencing demand beyond the price channel. These results also provide

reassurance that the instruments do not simply capture idiosyncratic fluctuations in
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Table B2: Weather shocks vs. incomes and expenditures

Rainfall Temperature

Market Outcome Estimate SE Estimate SE Obs

CPI 0.00357 (0.00277) 0.00259 (0.00246) 174
European Union GDP 0.00517 (0.00765) 0.00395 (0.00737) 174

GDE 0.00574 (0.00785) 0.00424 (0.00749) 174

CPI 0.00644 (0.0110) 0.00353 (0.0113) 174
China/India GDP 1.10e-05 (0.0103) -0.00350 (0.00987) 174

GDE -0.00166 (0.00971) -0.00436 (0.00923) 174

CPI 0.00573 (0.00779) 0.000981 (0.00787) 174
Other importers GDP 0.00352 (0.00450) 0.00172 (0.00411) 174

GDE 0.00422 (0.00417) 0.00228 (0.00373) 174

CPI -0.0231 (0.0247) -0.0220 (0.0243) 174
Indonesia/Malaysia GDP 0.0113 (0.0154) 0.00534 (0.0157) 174

GDE 0.00921 (0.0147) 0.00420 (0.0152) 174

Each row is a regression. Annual data cover coconut, olive, palm, rapeseed, soybean, and sunflower
oils from 1988 to 2016. For outcome variables, GDPs and GDEs are in logs, and CPIs aggregate
national data weighted by household GDE. Weather shocks are absolute deviations from optimal
conditions during the growing season, aggregated over producing regions. Oil fixed effects and oil-
specific time trends differentiate between palm and other oils. Newey-West standard errors account
for serial correlation. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table B3: Demand elasticities for other oils

Palm Other

Estimate SE Estimate SE

European Union -0.723*** (0.210) -0.943*** (0.024)
China/India -0.692*** (0.168) -0.867*** (0.045)
Other importers -0.876*** (0.128) -0.892*** (0.036)
Indonesia/Malaysia -0.925*** (0.046) -0.531* (0.309)

Each pair of columns shows own-price elasticities by consumer market. I report elasticities of total
consumption with respect to a 1% increase in prices from 1988 to 2016. Other oils aggregate over
non-palm vegetable oils. Demand estimation draws on annual data covering coconut, olive, palm,
rapeseed, soybean, and sunflower oils from 1988 to 2016. *** p < 0.01, ** p < 0.05, * p < 0.1.

macroeconomic conditions. Table B3 shows that own-price elasticities for other oils

are similar to those for palm oil. Elasticities for other oils are more precisely estimated

for the EU, China, India, and other importers, where observed consumption of other

oils is high. They are much less precisely estimated for Indonesia and Malaysia, where

observed consumption of other oils is particularly low.
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Table B4: Demand elasticities with dynamics and longer-run variation

Price lags
None One-year Two-year Three-year

Estimate SE Estimate SE Estimate SE Estimate SE

European Union -0.723*** (0.210) -0.572** (0.248) -0.547** (0.236) -0.505* (0.262)
China/India -0.692*** (0.168) -0.653*** (0.160) -0.786*** (0.110) -0.733*** (0.100)
Other importers -0.876*** (0.128) -0.786*** (0.134) -0.761*** (0.132) -0.761*** (0.150)
Indonesia/Malaysia -0.925*** (0.046) -0.949*** (0.039) -0.949*** (0.033) -0.965*** (0.032)

Price leads
None One-year Two-year Three-year

Estimate SE Estimate SE Estimate SE Estimate SE

European Union -0.723*** (0.210) -0.844*** (0.169) -0.872*** (0.188) -0.851*** (0.186)
China/India -0.692*** (0.168) -0.646*** (0.171) -0.727*** (0.178) -0.733*** (0.221)
Other importers -0.876*** (0.128) -0.876*** (0.119) -0.860*** (0.137) -0.810*** (0.147)
Indonesia/Malaysia -0.925*** (0.046) -0.940*** (0.052) -0.936*** (0.047) -0.988*** (0.034)

Rolling maximum
None One-year Two-year Five-year

Estimate SE Estimate SE Estimate SE Estimate SE

European Union -0.723*** (0.210) -0.554*** (0.166) -0.488* (0.265) -0.624*** (0.212)
China/India -0.692*** (0.168) -0.437*** (0.097) -0.662*** (0.206) -0.885*** (0.130)
Other importers -0.876*** (0.128) -0.700*** (0.143) -0.731*** (0.277) -0.295 (0.845)
Indonesia/Malaysia -0.925*** (0.046) -1.010*** (0.040) -1.046*** (0.051) -1.045*** (0.086)

Rolling minimum
None One-year Two-year Five-year

Estimate SE Estimate SE Estimate SE Estimate SE

European Union -0.723*** (0.210) -0.393 (0.518) -0.271 (0.712) -1.142*** (0.399)
China/India -0.692*** (0.168) -0.668* (0.404) -0.839** (0.416) -0.971*** (0.285)
Other importers -0.876*** (0.128) -0.927*** (0.222) -1.119*** (0.204) -1.116*** (0.178)
Indonesia/Malaysia -0.925*** (0.046) -0.810*** (0.103) -0.871*** (0.099) -1.074*** (0.084)

Each pair of columns shows own-price elasticities for palm oil by consumer market. Elasticities and
estimation are as described in table B3. I explore dynamics with price lags and leads of up to three
years. I exploit longer-run variation in the maximum and minimum shocks within rolling windows
of up to five years before and after each year. *** p < 0.01, ** p < 0.05, * p < 0.1.

I take a static, short-run approach to estimating demand. Estimation is static

because the demand model is static, and estimation is short-run because it relies on

annual variation in prices. I underestimate price elasticities if substitution is slow or

if switching is costly. If substitution is slow, then consumers respond to price changes

with a delay or in anticipation. If switching is costly, then consumers respond only to

longer-run price changes. In both cases, demand responds weakly to contemporaneous

prices. However, table B4 finds limited evidence for such effects. I evaluate delayed

and anticipatory responses with price lags and leads of up to three years, and I draw
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on longer-run variation over rolling windows that extend up to five years before and

after each year. I obtain similar estimates across specifications.

I may also overestimate price elasticities. If consumers stockpile or if permanent

switching is more costly than temporary switching, then demand responds especially

strongly to contemporaneous prices. Table B4 does not reveal strong upward bias

in the baseline estimates. Indeed, the USDA data record limited stockpiling that

averages only 12% of consumption by volume (USDA 2025), relative to 342% and

188% in other contexts (Erdem et al. 2003, Hendel and Nevo 2006). These studies

document weekly, individual-level stockpiling, which aggregates out in my annual,

national-level measures of consumption.

C Supply

Model

I define choice-specific conditional value functions

v̄(0, sit) = βE[V̄ (sit+1) | sit] , (12a)

v̄(1, sit) = −c̄(sit) + V (0, sit) . (12b)

To lighten notation, I denote arguments with subscripts for the rest of this section.

By the logit shocks of equation 5, mill construction probabilities are

πit =
exp[v̄it(1)]

exp[v̄it(0)] + exp[v̄it(1)]
, (13)

and expected utility is given by the log-sum formula

V̄it = ln{exp[v̄it(0)] + exp[v̄it(1)]} = v̄it(1)− ln πit . (14)

Arcidiacono and Ellickson (2011) document this expression as the logit special case

of Arcidiacono and Miller (2011) Lemma 1. For linear revenue function rit, I can

rewrite equation 6 as

Vit(Nit) = αptyitNit + Eit
[
max
nit

{
− cit(nit) +

T−t∑
s=3

αβspt+syit+snit

}
+ βVit+1(Nit)

]
. (15)
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I express flow revenues for new development nit as a net present value, while keeping

revenues for mature plantations Nit in recursive form. For quadratic cost function cit,

the first order condition gives plantation development

nit =
1

ψ

(
− γ0g − γ1g t− xiδ − εit +

T−t∑
s=3

αβsEit[pt+syit+s]
)
. (16)

Substituting back into equation 15, I obtain

Vit(0) =
1

2
ψn2

it + βEit[Vit+1(0)] =
T−t∑
s=0

βsEit
[
1

2
ψn2

it+s

]
. (17)

Production

I can compute production by site from supply parameters {α, γ0g , γ1g , δ} and states

{si1, . . . , siT}. First, I calculate mill construction probabilities and plantation devel-

opment {πit, nit}.

1. Compute {ni1, . . . , niT} with equation 16.

2. Compute {Vi1(0), . . . , ViT (0)} with equation 17.

3. Compute {v̄i1(1), . . . , v̄iT (1)} with equation 12b.

4. Compute {πi1, . . . , πiT} backward from terminal year T . In year T , v̄iT (0) =

0 by normalization; πiT follows from equation 13. In prior years, v̄it(0) =

βEit[v̄it+1(1)− ln πit+1] by equations 12a and 14; πit follows from equation 13.

Second, I calculate expected mill stocks and plantation acreage {M̂it, N̂it}.

M̂it+1 = M̂it + (1− M̂it)πit , N̂it+3 = N̂it + M̂it+1nit , (18)

where initial conditions {Mi1, Ni1} are as observed in the data. For sites that con-

tain a mill initially, Mi1 = 1 implies πit = 0 and thus M̂it = 1. For other sites, I

obtain expected mill investment M̂it ∈ [0, 1) as a function of investment probabilities

πit. These expected values are continuous, unlike the binary observed values of mill

stocks Mit ∈ {0, 1}, and I sum over sites to compute aggregate production in each

year. As in Hopenhayn (1992), atomistic firms and the law of large numbers imply

that realized production is given simply by expected production, which equations 18

deliver in closed form. Without atomistic firms, calculating realized production is
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more computationally intensive. It requires simulating discrete realizations of mill

construction choices mit with choice probabilities πit, then integrating over the dis-

tribution of potential realizations.

Estimation

I derive regression equations for estimating the supply model. On the intensive

margin, differentiating equation 6 gives first order conditions for plantation develop-

ment (nit, nit+1).

[nit]
∂cit
∂nit

= β3Eit
[
∂rit+3

∂nit

]
+ β4Eit

[
∂Vit+4

∂nit

]
, [nit+1] βEit

[
∂cit+1

∂nit+1

]
= β4Eit

[
∂Vit+4

∂nit+1

]
.

By the envelope theorem, impacts on future actions are negligible. Differencing gives

Euler equation
∂cit
∂nit

− βEit
[
∂cit+1

∂nit+1

]
= β3Eit

[
∂rit+3

∂nit

]
,

which compares payoffs of plantation development in year t relative to year t + 1.

Specializing with rit and cit, the difference in revenues is Eit[∂rit+3

∂nit
] = αEit[pt+3yit+3].

The difference in costs is

∂cit
∂nit

−βEit
[
∂cit+1

∂nit+1

]
= (1−β)(γ0g +γ1g t+xiδ)−βγ1g +ψnit+εit−βEit[ψnit+1−εit+1] .

Defining structural error µit = − 1
ψ
εit +

β
ψ
εit+1 and expectational error

ηit = Eit
[
βnit+1 +

αβ3

ψ
pt+3yit+3 +

β

ψ
εit+1

]
− βnit+1 −

αβ3

ψ
pt+3yit+3 −

β

ψ
εit+1 ,

I substitute and rewrite to obtain regression equation 9.

On the extensive margin, v̄it(1) = −c̄it + Vit(0) by definition, and v̄it(0) =

βEit[v̄it+1(1) − ln πit+1] by equations 12a and 14. Inverting equation 13 and sub-

stituting gives

ln πit − ln(1− πit) = v̄it(1)− v̄it(0)

= −c̄it + Vit(0) + βEit[c̄it+1 − Vit+1(0) + ln πit+1] ,

which compares payoffs of mill construction in year t relative to year t + 1. Special-
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izing with rit, cit, and c̄it, the difference in revenues is Vit(0)− βEit[Vit+1(0)] =
1
2
ψn2

it

by equation 17. The linear separability of equation 17 admits a finite-dependence

argument, as the only gain from mill construction in year t relative to t+1 is the flow

revenue from plantation development nit, net of its upfront costs. Future develop-

ment choices and payoffs remain unaffected, such that continuation values align and

difference out. The difference in costs is

−c̄it + βEit[c̄it+1] = βγ̄1g − (1− β)(γ̄0g + γ̄1g t+ xiδ̄)− ε̄it + βEit[ε̄it+1] .

Defining structural error µ̄it = −ε̄it + βε̄it+1 and expectational error

η̄it = Eit[β lnπit+1 + βε̄it+1]− β lnπit+1 − βε̄it+1 ,

I substitute and rewrite to obtain regression equation 10.

Finally, a static model would ignore the durability of mills and plantations, as

well as time to build. To this end, I consider laws of motion Mit = mit and Nit = nit

that eliminate long-run continuation values. Equations 6 and 5 yield intensive- and

extensive-margin conditions

∂cit
∂nit

=
∂rit
∂nit

, lnπit − ln(1− πit) = v̄it(1)− v̄it(0) = −c̄it + Vit(0) .

I substitute and rewrite to obtain regression equations

nit =
α

ψ
ptyit −

1

ψ
(γ0g + γ1g t+ xiδ)−

1

ψ
εit ,

lnπit − ln(1− πit) =
1

2
ψn2

it − γ̄0g − γ̄1g t− xiδ̄ − ε̄it .

Elasticities

For small price changes within the study period, I can compute production by

site from supply parameters {α, ψ}. I do not need to specify states beyond the

study period. These price changes have no direct effect on forward-looking choices

{n̂iS, π̂iS}, where S is the final year of the study period, and so I can read these

choices from data {niS, πiS}. I then compute counterfactual choices {n̂it, π̂it} for all
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Table C1: Lagged instruments

Future revenues

β3pt+3yit+3

Current total oil consumption × yields 112.8*** (1.811)
Current other oil rainfall shocks × yields -31.19*** (1.143)
Current other oil temperature shocks × yields -81.66*** (1.405)

Region FE x
Region-year trend x
Observations 37,754
F-statistic 6,760

The table shows the first stage for current revenues as an instrument for future revenues. Other oils
aggregate over coconut, olive, rapeseed, soybean, and sunflower oils. I control for cost factors and
cluster standard errors by district. *** p < 0.01, ** p < 0.05, * p < 0.1.

preceding years directly from estimating equations 9 and 10. For differences

∆nit = nit − βnit+1 , (19a)

∆πit = lnπit − ln(1− πit)− β ln πit+1 , (19b)

I proceed as follows for price changes from observed pt to counterfactual p̂t.

1. Compute ∆nit by equation 19a.

2. Compute ∆n̂it. By equations 9 and 19a, ∆n̂it = ∆nit +
αβ3

ψ
(p̂t+3 − pt+3)yit+3.

3. Compute n̂it. By equation 19a, n̂it = ∆n̂it + βnit+1, where n̂iS is data.

4. Compute ∆πit by equation 19b.

5. Compute ∆π̂it. By equations 10 and 19b, ∆π̂it = ∆πit +
1
2
ψ(n̂it − nit)

2.

6. Compute π̂it. By equation 19b, ln π̂it− ln(1− π̂it) = ∆π̂it+β ln π̂it+1, where π̂iS

is data.

7. Compute {M̂it, N̂it} by equations 18.

Estimates

Table C1 presents the first stage regression and shows that lagged demand shifters

are strong instruments for revenues. Total vegetable oil consumption raises demand

and thus prices for palm oil. Rainfall and temperature shocks to other vegetable oils

instead reduce prices for palm oil. The substitution effect suggests that these shocks

reduce supply and raise prices for other oils, thereby raising demand and thus prices
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Table C2: Supply parameters by region

γ0g/α ($1K) γ1g/α ($1K) γ̄0g/α ($1M) γ̄1g/α ($1M)

Estimate SE Estimate SE Estimate SE Estimate SE

Indonesia, Sumatra 6.647*** (0.218) -0.471*** (0.021) 99.77** (45.30) 1.713** (0.677)
Indonesia, Kalimantan 8.146*** (1.038) -0.166 (0.104) 81.89** (35.47) 1.641*** (0.412)
Malaysia, Peninsular 10.44*** (1.015) -0.284*** (0.095) 35.83** (16.26) -0.329 (0.654)
Malaysia, East 6.911*** (0.761) -0.682*** (0.030) 144.2** (70.82) 2.338*** (0.707)

Each row shows cost parameters in dollar terms for a producing region. The first pair of columns
is the fixed cost of plantation development in thousands of inflation-adjusted, year-2000 USD. The
second pair is the annual trend in these costs. Similarly, the third pair of columns is the fixed cost
of mill construction in millions of dollars. The fourth pair is the annual trend in these costs. ***
p < 0.01, ** p < 0.05, * p < 0.1.

for palm oil. But the income effect suggests that higher prices for other oils reduce

price-adjusted incomes, thereby reducing demand and thus prices for palm oil. The

income effect seems to dominate.32

Table C2 presents average costs and time trends by region. Peninsular Malaysia

has the highest costs of plantation development, but the lowest costs of mill construc-

tion. This combination rationalizes widespread but slow growth in palm oil produc-

tion, which originates in this region but remains limited by land constraints during

the study period. Other regions have lower plantation costs and higher mill costs,

which rationalize spatially concentrated but rapid growth in production. Low plan-

tation costs encourage intensive-margin expansion, while high mill costs discourage

extensive-margin expansion. These effects strengthen over time with falling planta-

tion costs and rising mill costs.

Figure C1 shows that estimation without instruments leads to attenuated esti-

mates, as expected. For intensive-margin equation 9, larger revenue pt+3yit+3 implies

larger unobserved costs εit and smaller expectational error ηit, which attenuate the

effect of an increase in pt+3yit+3 on the dependent variable. Static estimation also

leads to biased estimates, which I find are negative. Static estimation regresses on

current prices, even though forward-looking investment depends on future prices.

Current prices are noisy measures of future prices, and this noise biases estimates

toward zero. Furthermore, investment may even slow when prices are high, as mean

32 Table 3 suggests a related force. For other importers (44% of consumption), I estimate δ to be
large and positive. Palm oil expenditure shares fall as incomes fall, adding to the income effect.
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Figure C1: Supply elasticities, alternative specifications

Each point is an elasticity of total production during the study period with respect to a 1% increase in
prices throughout the study period. The first three points show dynamic IV, dynamic OLS, and static
IV estimation. The fourth point uses disaggregated road, port, and urban distances and above- and
belowground carbon stocks for estimation. The “smoothing” points show alternative basis functions
for smoothing in extensive-margin estimation. The “selection” points show alternative samples for
smoothing, again for extensive-margin estimation, where I compute plantation development for sites
without mills from varying subsamples of sites with a mill. I plot 95% confidence intervals.

reversion implies that high prices today portend lower prices tomorrow.

Figure C1 also shows robustness to alternative specifications. First, I treat cost

factors parsimoniously, but I obtain similar estimates with disaggregated cost factors

that include road, port, and urban distances and above- and belowground carbon

stocks. Second, extensive-margin estimation involves smoothing over observed choices

to compute mill construction probabilities πit and plantation development nit for sites

without mills. I smooth spatially with one-knot cubic basis splines, but I obtain

similar estimates when smoothing non-spatially (omitting latitude and longitude as

basis variables), with three knots, and with three-knot restricted cubic splines.

Third, I assume that unobserved mill and plantation costs {ε̄it, εit} are uncor-

related with each other. Correlation threatens estimates of parameter ψ in equation

10. Consider a positive correlation, as is natural. On one hand, sites with a mill are

positively selected on plantation development nit, and so I overestimate nit for sites

without mills. This bias leads me to underestimate ψ. On the other hand, plantation

development nit is positively correlated with structural error µ̄it, as nit contains εit

and µ̄it contains ε̄it. This correlation leads me to overestimate ψ. Figure C1 shows
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that these forces seem to be inconsequential in my sample. In particular, I identify

sites that are likely to have extreme values for unobserved costs. Sites with a mill

despite low probabilities πit of mill construction must have low costs ε̄it. Correlated

costs then imply low costs εit that encourage high development nit. I calculate πit for

all sites, and I drop those with a mill despite low πit. These sites are most selected. I

smooth over the remaining sites with a mill, and I obtain n̂it for sites without mills.

I then estimate elasticities as in baseline. I obtain similar estimates when dropping

the 10, 25, and 50% of sites with lowest πit. More generally, however, the potential

for correlation across margins remains a challenge for discrete-continuous models.

D Counterfactuals

Welfare

I compute undiscounted total consumer surplus, producer surplus, government

revenue, and emissions over the study period. For a given year t,

CSt =
∑
k

(
X(p1t, p2t;u

0
kt)−X(p01t, p

0
2t;u

0
kt)

)
,

PSt =
∑
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1

α
[c(nit, sit)Mit+1 + c̄(sit)πit(1−Mit)]

)
,
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∑
k

p1tq
D
1ktτ

D
kt +

∑
i

p1tq
S
1itτ

S
gt , Et =

∑
i

einitMit+1 .

Consumer surplus is the increase in expenditures Xkt needed to maintain utility ukt =

(lnXkt− lnPkt)(
∏

o p
δok
ot )

−1, as derived in Deaton and Muellbauer (1980). It is relative

to baseline prices {p01t, p02t} and utility u0kt. Producer surplus is relative to the outside

option. In net-present-value terms, producer surplus is simply V̄ (sit). I compute

revenue net of costs to obtain producer surplus in undiscounted terms. Government

revenue is from ad valorem taxes on world prices p1t. Emissions depend on carbon

stock density ei, as measured in tons per hectare. I observe carbon stocks, and so I

can read counterfactual emissions directly from data.

Emissions

On the demand side, I ignore emissions from substitution to other vegetable oils.

The primary threat is South American soybean oil, which contributes to Amazonian
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Table D1: Acacia vs. palm development

All sites 1990 sites All districts 1990 districts

Acacia Acacia Acacia Acacia Acacia Acacia Acacia Acacia

Palm 0.0235*** 0.0134 0.0233* 0.0125 0.0350** -0.0160 0.0293 -0.0189
(0.00888) (0.00859) (0.0116) (0.0124) (0.0159) (0.0345) (0.0191) (0.0422)

Site FE x x x x
Year FE x x x x
Observations 5,700 5,700 1,254 1,254 528 528 270 270

Each column is one regression. I measure palm and acacia development in hectares of new plantation.
In the first four columns, each observation is a site-year. I consider the full sample and the sample
with nonzero palm development in 1990. In the last four columns, each observations is a district-
year. I again consider the full and 1990 samples. Standard errors are clustered by district. ***
p < 0.01, ** p < 0.05, * p < 0.1.

deforestation. The resulting bias is small because Amazonian deforestation is driven

primarily by cattle, not soy (Souza-Rodrigues 2019), and it does not destroy peat-

lands, which are located away from the deforested outskirts of the forest (Gumbricht

et al. 2017, Song et al. 2018). Furthermore, South American soybean oil is only 13%

of total oil consumption. To capture these emissions, I would need to model the

supply of soybean oil. I would then impose joint tariffs on palm and soybean oils.

On the supply side, I ignore emissions from substitution to other drivers of de-

forestation. I leave aside mining, which is governed by the exogenous distribution

of deposits, and selective logging, which does not destroy peatlands. The primary

threat that remains is substitution to acacia (paper pulp) plantations, which do de-

stroy peatlands. The resulting bias is small because palm oil is seven times more

profitable than acacia, which requires replanting upon harvest, such that switching

to acacia is unappealing for many palm oil producers (Sofiyuddin et al. 2012). To

capture these emissions, I would need to model the choice between palm and acacia

development. I would then impose joint tariffs on palm oil and acacia.

Indeed, palm development greatly exceeds acacia development, and I find limited

substitution between the two historically. Gaveau et al. (2019) measure palm and

acacia plantations for the island of Borneo in five-year intervals from 1990 to 2015.

For the average site, I observe 257 ha of palm development per year, relative to only

42 ha of acacia development per year. These measures align with the baseline data,

which capture 288 ha of palm development per year. I test for substitution between
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Table D2: Domestic regulation

20% tax 33% tax 50% tax 67% tax

2016 2001 2016 2001 2016 2001 2016 2001

Production taxes (I + M)
Emissions -3 -0 -5 -0 -7 -1 -11 -1
Welfare: European Union -7 -2 -12 -3 -22 -6 -33 -8
Welfare: China, India -12 -3 -23 -5 -41 -9 -64 -13
Welfare: Other importers -23 -8 -42 -14 -74 -22 -111 -31
Welfare: Indonesia 5 -1 5 -3 -0 -7 -11 -12
Welfare: Malaysia 14 5 24 9 38 14 49 17

Production taxes (I)
Emissions -2 -0 -3 -1 -5 -1 -6 -1
Welfare: European Union -3 -1 -5 -1 -7 -2 -8 -2
Welfare: China, India -6 -2 -10 -2 -13 -3 -15 -3
Welfare: Other importers -12 -4 -18 -6 -22 -7 -26 -7
Welfare: Indonesia -24 -16 -37 -27 -43 -32 -49 -32
Welfare: Malaysia 33 18 49 28 57 32 64 33

Production taxes (M)
Emissions -1 0 -1 -0 -2 -0 -2 -0
Welfare: European Union -2 -1 -3 -1 -4 -1 -4 -1
Welfare: China, India -4 -1 -6 -2 -7 -2 -8 -2
Welfare: Other importers -7 -3 -10 -4 -13 -5 -14 -5
Welfare: Indonesia 25 15 33 22 37 24 39 25
Welfare: Malaysia -20 -13 -27 -21 -30 -23 -32 -24

I compute total changes in global emissions and market-specific welfare from 1988 to 2016. Emissions
are in gigatons of CO2, and welfare is in billions of inflation-adjusted, year-2000 USD. Production
taxes are levied in Indonesia (I), Malaysia (M), or both (I + M). Welfare for Indonesia and Malaysia
includes consumer surplus, producer surplus, and government revenue. Welfare elsewhere includes
consumer surplus. Columns are taxes of different levels, upheld from 1988 to 2016 or 2001.

palm and acacia as follows. For sites i and years t, I compare palm and acacia

development with the specification

∆acaciait = β∆palmit + αi + αt + εit .

Acaciait is total acacia plantation, and so ∆acaciait is new acacia development. I

include site and year fixed effects, and I cluster standard errors by district. Table D1

shows that palm development has very small effects on acacia development. Palm

development does not displace acacia development and if anything slightly increases

it, perhaps by opening up new lands. That is, palm and acacia are not substitutes and

may even be weak complements. I isolate intensive-margin investments by focusing
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Table D3: Trade policy

25% tax 50% tax 100% tax 200% tax

2016 2001 2016 2001 2016 2001 2016 2001

Import tariffs (all imports)
Emissions -2 -0 -3 -0 -5 -0 -8 -1
Welfare: European Union 5 1 8 2 9 2 4 2
Welfare: China, India 7 1 10 1 9 1 -3 -0
Welfare: Other importers 13 4 17 6 13 6 -12 1
Welfare: Indonesia, Malaysia -34 -15 -58 -25 -88 -39 -120 -54

Import tariffs (EU + CI)
Emissions -1 -0 -1 -0 -2 -0 -3 -0
Welfare: European Union 2 1 2 1 -2 -0 -14 -3
Welfare: China, India 3 0 1 0 -7 -1 -33 -4
Welfare: Other importers 9 2 16 5 27 8 41 12
Welfare: Indonesia, Malaysia -12 -4 -20 -7 -32 -11 -45 -16

Import tariffs (EU)
Emissions -0 -0 -0 -0 -1 -0 -1 -0
Welfare: European Union -0 0 -2 -0 -10 -2 -28 -5
Welfare: China, India 2 0 3 1 5 1 8 1
Welfare: Other importers 3 1 6 2 10 4 15 6
Welfare: Indonesia, Malaysia -5 -2 -9 -4 -14 -6 -19 -9

Export taxes (all exports)
Emissions -2 -0 -3 -0 -5 -0 -8 -1
Welfare: European Union -8 -2 -15 -4 -28 -7 -48 -11
Welfare: China, India -14 -3 -28 -6 -51 -10 -90 -17
Welfare: Other importers -28 -9 -52 -16 -94 -29 -161 -48
Welfare: Indonesia, Malaysia 35 12 61 20 98 33 145 50

I compute total changes in global emissions and market-specific welfare from 1988 to 2016. Emissions
are in gigatons of CO2, and welfare is in billions of inflation-adjusted, year-2000 USD. Import tariffs
are levied on all imports, imports to the EU, China, and India (EU + CI), or imports to the EU alone
(EU). Export taxes are levied on all exports from Indonesia and Malaysia. Welfare for Indonesia
and Malaysia includes consumer surplus and producer surplus, as well as government revenue from
export taxes. Welfare elsewhere includes consumer surplus, as well as government revenue from
import tariffs. Columns are taxes of different levels, upheld from 1988 to 2016 or 2001.

on sites with nonzero initial palm development, and I allow for cross-site effects by

aggregating to the district level. Each gives similar estimates.

Policy

Tables D2 and D3 summarize the impacts of domestic regulation and trade policy

on global emissions and welfare by market. They correspond to table 6 and figures

6, 7, and 8.
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