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Abstract

This paper studies how global warming affects deforestation and agricultural land
use. Using global, high-resolution data on temperature, deforestation, and land cover
from 2001 to 2019, we find that extreme heat causes large and persistent forest loss on
the world’s agricultural frontier. This effect is strongest in the tropics, in areas with
the most temperature-sensitive crops, and in regions with the most inelastic demand
for agricultural products, and we find no evidence that it is offset by global spillovers.
Deforestation in response to extreme heat can be explained almost entirely by cropland
expansion. We corroborate these findings using agricultural census data from Brazil,
where extreme heat leads to productivity declines, cropland expansion, and limited
additional input adjustment or land reallocation. Our estimates imply that extreme
heat has already driven substantial forest loss and that projected warming through
2100 could lead to an additional 28 million hectares of deforestation. These findings
challenge the view that economic reallocation will necessarily soften the economic
and environmental consequences of climate change, suggesting instead that farmers
double down and expand cropland locally in response to lower productivity.
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1 Introduction

Rising temperatures have dramatically affected agricultural productivity around the world
(Lobell and Field, 2007; Schlenker and Roberts, 2009; Lobell et al., 2011; Hultgren et al.,
2025). How does this phenomenon affect global deforestation and agricultural land use?

There are two competing hypotheses regarding this relationship, each of which has
starkly different implications. One hypothesis is that places where climate change harms
agricultural productivity devote less land to agriculture while places where climate change
improves agricultural productivity (in relative terms) devote more (e.g., Costinot et al.,
2016). This strong realignment of economic activity in response to evolving comparative
advantage is a natural outcome if global barriers to re-specialization, factor mobility, and
trade are low (e.g., Cruz and Rossi-Hansberg, 2024). The resulting reallocation could
potentially mitigate substantial damages to both agricultural productivity and the envi-
ronment (e.g., Davis et al., 2017; Rising and Devineni, 2020; Beyer et al., 2022).

A second hypothesis, however, is that agricultural land use actually expands in areas
that become less productive. This prediction is closely related to Norman Borlaug’s classic
hypothesis that the expansion of unproductive agriculture onto new lands is a principal
driver of deforestation (Borlaug, 2000), as well as the observation that agriculturally un-
productive parts of the world must be particularly agriculturally intensive in order to
meet local subsistence needs (Schultz, 1953; Gollin et al., 2007; Nath, 2025). Expansion in
unproductive places is a natural outcome if agricultural products are produced and con-
sumed locally, and therefore farmers react to productivity losses by cutting down forests
to expand land under cultivation. By implication, climate change could further entrench
agricultural production and exacerbate environmental harm in affected locations.

This paper empirically investigates the relationship between global warming, defor-
estation, and agricultural land use at the global scale. Using gridded data at the one-degree
grid-cell level, we find that increased exposure to extreme heat causes local deforestation.
This effect is persistent and not mitigated by spatial spillovers. Consistent with the view
of agricultural “entrenchment,” extreme heat drives local cropland expansion, and the
link between heat and deforestation is strongest in places that face relatively inelastic agri-
cultural demand and grow relatively heat-intolerant crops. Quantitatively, extreme heat
exposure from 2015 to 2019 led to 1.4 million hectares of forest loss, driven by deforesta-
tion in tropical countries and especially by deforestation in Brazil. Projected temperature
increases could lead to 28 million hectares of additional forest loss by 2100, equivalent to
26% of all deforestation and 48% of tropical deforestation observed in sample.
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Model. To fix ideas, we begin our analysis with a simple model of agricultural produc-
tion and deforestation. Farmers produce agricultural output using land. They take as
given local agricultural productivity, local costs of clearing land, and the shadow price
of agricultural output. The last is determined by an equilibrium process that we keep
flexible. We allow, for example, the extent of market integration to vary by place and for
farmers to face constraints (e.g., subsistence requirements or credit constraints), such that
private valuations do not coincide with market prices.

An extreme heat shock affects incentives to deforest through three channels: productiv-
ity, prices, and costs. Lower productivity reduces the incentive to clear land. By contrast,
higher prices and lower costs of clearing the forest increase the incentive to clear land.
The net effect is ambiguous and depends on the relative strength of the three channels.
That is, extreme heat can lead to more deforestation, which we call the “entrenchment”
case, or less deforestation, which we call the “reallocation” case. Furthermore, extreme
heat has indirect effects through agricultural prices, which will always lead to (weakly)
more deforestation in regions that are not directly affected by the shock. This theoretical
ambiguity motivates our empirical analysis, which investigates these forces directly.

Data and Measurement. We first compile data on deforestation in each year since 2000
from Hansen et al. (2013). We complement these data with an alternative measure of de-
forestation that relies on land cover data from the European Space Agency (ESA) (Zanaga
et al., 2021). We also obtain an independent measure of area cleared by fires (Chen et al.,
2023), since fires are a common method to clear land for agricultural production in poor
countries with particularly pronounced effects on carbon emissions (Page et al., 2002).

We use the ESA land cover data to measure agricultural land use at a global scale.
We obtain more precise measures of land use in an important deforestation hotspot from
the latest three rounds of the Brazilian Agricultural Census (1996, 2006, 2017). To proxy
for short-run fluctuations in agricultural productivity, we compile global data on the
Normalized Difference Vegetation Index (NDVI), a satellite-based indicator of plant health
commonly used to proxy for agricultural output.

Finally, we measure daily temperature realizations using the ERA-5-Land database
from the European Centre for Medium-Range Weather Forecasts (Muñoz Sabater et al.,
2021). Motivated by existing work documenting that extreme heat exposure is the main
channel through which the weather affects agricultural productivity (e.g., Schlenker and
Roberts, 2009; Hultgren et al., 2025), we construct a negative productivity shock in each
grid cell and year as the number of “killing degree days”: the time exposure to tempera-
tures above 32◦C, weighted by their distance from the threshold.

We conduct our main analysis at the level of one-degree grid cells, which are 110 km
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wide at the equator. This choice allows us to focus on “local” environmental and economic
outcomes in a uniform way throughout the world. In robustness checks, we show the
stability of our conclusions to different choices for geographic units.

We focus much of our analysis on the ”Global Arc of Deforestation.” We define this by
first designating areas with more than 50% forest cover as “forest,” and then defining grid
cells on the border between forest and non-forest as the Arc.1 Our hypothesis is that the
effect of temperature change on deforestation—regardless of its sign—is strongest in the
Arc, where most marginal, undeveloped land is initially forested. The Arc is the active
frontier of agricultural expansion.

Main Results. Our main estimating equation captures the effect of changes in killing
degree days on deforestation at the level of 1◦ by 1◦ grid cells and years. The regression
model includes grid-cell and country-by-time fixed effects. The former absorb place-
specific linear trends.2 The latter absorb both global trends and changes in country-specific
regulation or enforcement (e.g., Burgess et al., 2024). Causal identification relies on the
randomness of local temperature extremes, conditional on these fixed effects.

Our main finding is that extreme temperatures cause local deforestation. This effect
persists for several years following the shock, and the long-run effect summed over five
years is an order of magnitude larger than the contemporaneous effect. The lack of a
dynamic “sign reversal” establishes that extreme heat exposure in a given year has per-
manent effects on forest cover, and rules out the alternative possibility that deforestation
is merely re-timed. We moreover find no evidence of pre-existing trends, suggesting no
role for reverse causality (e.g., if deforestation in the past raises temperatures today) or
anticipation. The baseline effect is more than twice as large in the tropics compared to
the non-tropics. When we turn to quantification, this difference in magnitude—combined
with the fact that the tropics also have greater exposure to extreme heat—will imply
that climate change has a disproportionate effect on deforestation in the tropics, precisely
where forest loss is most environmentally harmful.

The main result that temperature extremes induce deforestation is robust to a number
of alternative specifications. These include the use of alternative measures of deforesta-
tion, alternative definitions of the Arc of Deforestation, alternative temperature thresholds
to measure killing degree days, and models that include a range of additional controls, in-

1Our categorization generalizes the notion of the “Arc of Deforestation” that exists in studies of the Brazilian
Amazon (e.g., Fearnside, 2005; Csillik et al., 2024), where most deforestation occurs in areas between the
deep Amazon and agricultural lands.

2Failing to account for these location-specific trends can lead to spurious inference about the effects of
temperature extremes on outcomes. Since our regression is in first-differences, location fixed effects are
akin to including location-specific time trends in a linear model, as suggested by Jones et al. (2025).
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cluding place-specific linear “accelerations” (i.e., linear trends in a first-differences model)
and measures of upwind exposure to deforestation (Araujo et al., 2023). We also show
that extreme heat exposure is associated with greater fire setting, a specific form of land
clearing that is common in developing countries and which has independent negative
effects on both local health and carbon emissions (Page et al., 2002).

We find no evidence that local deforestation is mitigated by spillovers across regions.
To test for these spillovers, we construct a location-specific measure of shocks in other parts
of the world that grow the same crops, proxying for exposure to global price changes.
Augmenting our baseline model with this measure, we are able to capture spillovers
through prices while maintaining our model specification that controls for time fixed
effects and thus leverage the same identifying variation as our baseline specification. The
null spillover effects rule out the possibility that increased deforestation in heat-affected
areas is offset by decreased deforestation elsewhere. Instead, the local effects we uncover
seem to add one-for-one to the global tally of deforestation.

Mechanisms. We next study the mechanisms by which extreme heat induces deforesta-
tion. Our main hypothesis is that lower agricultural productivity incentivizes cropland
expansion, especially in settings where food demand is particularly inelastic.

First, we show that the extreme heat shocks that we measure induce substantial and
immediate declines in NDVI, suggestive of a negative effect on agricultural productivity.
We find no effects of extreme temperatures on NDVI in the deep forest far from the Arc of
Deforestation, suggesting that the decline in NDVI is primarily picking up declining crop
productivity rather than declining tree health.

Second, we show that the effect of extreme heat on deforestation is largest in regions
that cultivate heat-sensitive crops, for which killing degree days have the largest effect
on agricultural productivity. To measure local crop sensitivity, we combine data from
EarthStat on the crop composition of each grid cell in 2000 (Ramankutty et al., 2008) with
data on crop-specific temperature sensitivity from the Food and Agriculture Organiza-
tion’s EcoCrop Database in order to calculate the average temperature sensitivity of crops
grown in each grid cell (see Moscona and Sastry, 2023; Hsiao et al., 2025). This finding
further supports the hypothesis that deforestation is a result of lower local productivity.

Third, we show that the effect of extreme heat on deforestation is largest in regions
with the most inelastic food demand. To measure this, we compile data on crop-by-region
elasticity estimates from the USDA Commodity and Food Elasticities database and, com-
bining these estimates with crop composition data from EarthStat, calculate the average
local demand elasticity of the crops grown in each grid cell. This finding is consistent
with the hypothesis, illustrated in the model, that price effects drive deforestation: that is,

4



adverse shocks raise incentives to deforest by significantly increasing local food prices. We
also find larger effects of heat on deforestation when we estimate our baseline specification
on larger geographic units (five-by-five degree cells), which are plausibly less integrated
with one another than the one-by-one degree cells that comprise our baseline sample.

Fourth, we show direct evidence that extreme heat shocks lead to cropland expansion.
Using a satellite-derived measure of land devoted to crop cultivation in each cell and
year from the ESA, we find that extreme heat shocks lead to cropland expansion that
accumulates over several years. While changes in cropland are more challenging to detect
from satellite imagery than changes in forested area, the estimates imply that cropland
expansion can explain nearly all of the forest loss to deforestation. Like deforestation,
cropland expansion is concentrated in the tropics and does not take place far away from
forested areas, where opportunities to clear new land are more limited.

Finally, we use census data from Brazil to study how temperature shocks affect land
use and input changes in greater detail. Combining the 1996, 2006, and 2017 rounds of
Brazil’s Agricultural Census, we find that municipality-level extreme heat exposure leads
to cropland expansion during the subsequent decade. We find no evidence of pasture land
expansions or of increased labor use, suggesting that extreme heat represents a negative
shock that is specific to cropland productivity, which in turn drives deforestation through
the channels discussed above. Despite the expansion of agricultural land use, extreme heat
exposure nevertheless reduces agricultural output and substantially lowers agricultural
output per area, driven both by lower productivity on existing land and the fact that
production expands to ex ante less productive areas. Thus, rather than shifting away from
the most heat-exposed regions, these estimates further emphasize that cropland expands
in exactly the regions that are most exposed to damaging temperatures.

Quantification. We combine our baseline estimates with data on extreme heat exposure
from the sample period and projections of extreme heat exposure through the end of
the century in order to quantify the aggregate effect of rising temperatures on past and
future deforestation. From 2006 to 2019, we estimate that extreme heat exposure led to
1.42 million hectares of forest loss, or over one thousand square kilometers per year. This
is largely driven by tropical deforestation, and especially by Brazil, where heat-induced
deforestation can explain over 8% of all deforestation during the period. By the end of the
century, under a “middle of the road” climate scenario (SSP 2-4.5), our estimates imply
that extreme heat will cause an additional 30 million hectares of tropical deforestation,
an area larger than Italy, the Philippines, or Arizona. This would represent a substantial
increase compared to past deforestation trends. For example, predicted heat-induced
tropical deforestation amounts to 48% of all tropical deforestation and 134% of Brazilian
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deforestation that has taken place from 2005 to 2019. Under a much more extreme, but still
possible, climate scenario (SSP 5-8.5), these figures jump to 152% and 394%, respectively.

Related Literature. Our paper relates to several strands of literature. First, we contribute
to work on the economics of deforestation, including recent empirical studies of defor-
estation in tropical regions (e.g., Assunção et al., 2015, 2023; Burgess et al., 2012, 2024,
2025; Akerman, 2025).3 Our focus on the impact of changing agricultural productivity is
related to microeconomic studies that investigate how agricultural input, technology, or
price shocks affect local deforestation (Barrett, 1999; Pelletier et al., 2020; Abman et al.,
2020; Abman and Carney, 2020; Carreira et al., 2024; Szerman et al., 2024). Our analysis of
spillover effects and interpretation of the Borlaug hypothesis relates our work to Farrokhi
et al. (2025), who study how changes in trade costs affect global deforestation.

Second, we connect to studies of land and labor reallocation in global agriculture (e.g.,
Hertel, 2002, 2013; Gollin et al., 2007; Moscona and Sastry, 2025; Carleton et al., 2025; Far-
rokhi et al., 2025). Our findings are consistent with the argument in Nath (2025) that trade
frictions limit sectoral reallocation in response to climate change. This in turn harkens
back to the theoretical analysis of Matsuyama (1992) showing that agricultural produc-
tivity improvements can lead to growth or shrinkage of the agricultural sector depending
on openness to trade. We resolve this theoretical ambiguity by directly estimating how
temperature shocks affect land use and deforestation.

Finally, we build on a large body of work studying climate impacts and adaptation.
Unlike much of the existing empirical literature on agricultural damages (e.g., Lobell
and Field, 2007; Schlenker and Roberts, 2009; Lobell et al., 2011; Burke and Emerick, 2016;
Moscona and Sastry, 2023; Hsiao et al., 2025; Hultgren et al., 2025), we focus on the margin
of land use and its environmental footprint. This focus is shared by quantitative analyses
of spatial reallocation in agriculture (e.g., Costinot et al., 2016) and of multi-sector spatial
integrated assessment models (e.g., Cruz and Rossi-Hansberg, 2024). Our empirical results
pose a challenge for quantitative analyses that predict decreased agricultural investment
in the tropics as global warming accelerates. For such models, our empirical estimates are
informative about the direction and magnitude of local land use changes, as well as the
mechanisms that shape adaptation to climate shocks.

3See Balboni et al. (2023) and Costa et al. (2025) for recent surveys. Hsiao (2025), Barrozo (2025), and Mishra
(2025) perform related quantitative analysis of deforestation across space.
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2 Model

To fix ideas, we present a simple model of agricultural production, land use, and defor-
estation. Due to competing forces, extreme temperature exposure could lead to either
increased or decreased deforestation. This formalizes versions of both contrasting hy-
potheses described in the Introduction and motivates our empirical analysis. We focus on
a single period model here to fix the core ideas; we discuss dynamics below and in more
detail in Appendix B.

Set-up. The world consists of locations indexed by i ∈ I. In each location, farms produce
using xi units of land. They have productivity ai and they produce output with a (shadow)
price pi. We take the flexible interpretation that pi could incorporate the value of easing
subsistence or financial constraints, and therefore remains defined even in places without
functioning agricultural markets. To obtain x units of land, farmers must clear the forest
at cost − ci

2
x2, where ci > 0 is a local cost shifter. Thus, farmers’ land use decision in each

location is described by the profit maximization problem

xi ∈ argmax
x>0

{
piaix− ci

2
x2
}
, ∀i ∈ I (1)

taking pi, ai, and ci as given. We let qi = aixi denote realized agricultural output. Local
prices are determined by the system of equations

pi = Pi

(
(qj)j∈I

)
, ∀i ∈ I (2)

where we assume that each functionPi, which is potentially location-specific, is decreasing
in all arguments. That is, food scarcity weakly increases prices. This formulation allows
us to capture a number of possible market structures, such as those more or less open
to cross-location trade. An equilibrium is a vector of land-use decisions and prices such
that farmers optimize (equation 1) and markets clear (equation 2), given fundamentals
(ai, ci)i∈I .

Implications for Local Deforestation. Each farmer i’s optimal land-use choice, derived
from the first-order condition of equation (1), is xi = piai/ci. We interpret local extreme
temperature exposure as a shifter of the exogenous parameters ai and ci, which in turn
can affect the endogenous price pi. As such, the effect on deforestation in location i is

∆ log xi = ∆ log ai +∆ log pi −∆ log ci (3)
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This equation embodies three forces that shape the pathway from extreme tempera-
tures to deforestation. First, there is a productivity effect (∆ log ai): farmers want to use
more land if it is more productive. Second, there is a price effect (∆ log pi): farmers want
to use more land if the price of food increases. Third, there is a cost effect (−∆ log ci):
farmers want to use less land if the cost of clearing the forest increases.

Depending on the relative size of these three channels, a climate shock to local funda-
mentals could either decrease or increase local deforestation. One possibility is that rising
temperatures reduce productivity net of opportunity costs, log ai − log ci, more than they
increase local prices, log pi. In this “reallocation” case, temperature shocks lead localities
to deforest less and allocate less land to agriculture (∆ log xi < 0). Alternatively, rising
temperatures might reduce productivity net of opportunity costs less than they increase
local prices. In this “entrenchment” case (the Borlaug Hypothesis), temperature shocks
lead localities to deforest more and expand land devoted to agriculture (∆ log xi > 0).

An illustrative calculation that nests both cases can be obtained when agricultural
markets are fully localized with elasticity of demand δi: log qi = −δi log pi. Plugging this
demand curve into equation (3) and simplifying yields

∆ log xi =
δi − 1

δi + 1
∆ log ai −

δi
1 + δi

∆ log ci (4)

For sufficiently inelastic demand (δi < 1), ∆ log xi decreases in ∆ log ai: that is, despite
the productivity effect, the increase in prices is sufficient for lower productivity to induce
deforestation, even holding fixed costs. When δi → 0, ∆ log xi = −∆ log ai: the change in
land use must exactly offset the loss in productivity to achieve the same amount of food
production. This is the basic logic of the “food problem” described by Schultz (1953).

Implications for Global Spillovers. Different locations interact in the simple model
through output prices. Thus, in location j ̸= i, the response to an i-specific shock occurs
only through the price channel: ∆ log xj = ∆ log pj . If agricultural production declines in
location i, and prices everywhere are weakly decreasing in quantities in any location, then
this price effect is positive: ∆ log xj > 0. Thus, leakage or “spillovers” always manifest as
additional deforestation in indirectly affected locations. These effects scale with the extent
of price effects, so we would expect them to be larger if, for example, markets in i and j

are more integrated with one another: for example, if they grow the same crops.

Dynamics. In Appendix B, we augment this simple model to explicitly consider dy-
namics with adjustment costs. A new prediction is that deforestation occurs slowly in
response to shocks. Thus, to account for the full effects of a given shock on deforestation it
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is necessary to consider the full time path of responses, motivating the inclusion of lagged
effects in our main empirical model.

The Road Ahead. This simple model conveys that local extreme heat can either increase
or decrease local deforestation. Moreover, the sign and magnitude of this effect is governed
by the extent of local productivity effects and the extent of local price movements. Global
spillovers can amplify the effects of adverse shocks on total global deforestation, and they
scale with price effects that link locations through output markets. And, dynamically, the
full effects of extreme heat on land use can take time to unfold. These predictions will
motivate our main empirical analysis and our investigation of mechanisms.

3 Data and Measurement

3.1 Deforestation and Land Use

Forest Loss. We measure deforestation using the global forest change data set originally
introduced by Hansen et al. (2013). The data are originally constructed by using Landsat
satellite images at a 30-meter resolution since 2000 to determine whether each pixel was
deforested in each year. Combined with data on the percent tree cover of each pixel p in
2000, also reported by Hansen et al. (2013), we use this information to construct our main
measure of deforestation at the level of one-by-one-degree grid cells and years:

Deforestationit =
100

Areai

·
∑
p∈i

ILoss Yearp=t × (PctForestCoverp,2000 · Areap) (5)

where ILoss Yearp=t is an indicator if forest cover in pixel pwas lost in year t; PctForestCoverp,2000
is the percent forest cover of pixel p in 2000; and Areai and Areap are the areas of cell i and
pixel p respectively. This measure captures forest loss as the percent of grid cell i (0-100)
that was deforested in year t.

This is the main measure of deforestation used in our empirical analysis. In sensitivity
analysis, we also use a measure of deforestation produced by the European Space Agency
(ESA), measured in the same units (Zanaga et al., 2021). While the Hansen et al. (2013)
data are based on Landsat imagery, the ESA data rely on independent analysis of satellite
imagery from the Sentinel and Copernicus programs. This makes it useful for validation
of our main results.

Fires. Fire setting is a common strategy used for forest clearing, especially in tropical
regions. We use data from the Global Fire Emissions Database (GFED) to measure the
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share of each grid cell that was burned in a fire in each year (Chen et al., 2023). These
data were constructed using Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite imagery and, in that sense, provide independent information relative to both
measures of deforestation described above.

Agricultural Land Use. We use two different approaches to measure agricultural land
use. First, we use the aforementioned land cover data from the ESA to measure cropland
in each grid cell and year. This is our main measure of agricultural land use in the global
sample of grid cells.

Second, we use data from the last three rounds (1996, 2006, and 2017) of the Brazilian
Agricultural Census to measure changes in agricultural land use across Brazilian munic-
ipalities. The Census is constructed from detailed interviews with farmers conducted
roughly once per decade and, in contrast to the satellite data, represents an on-the-ground
assessment of agricultural expansion.

Lastly, as a proxy for local plant health, we compile global data on the Normalized Dif-
ference Vegetation Index (NDVI), a widely used, satellite-based indicator of the presence
and health of plant cover. These data are constructed by NASA’s Earth Observing System
using MODIS satellites and reported at the 0.1 degree level in each month.

3.2 Extreme Heat Exposure

We measure historical temperatures using the ERA5-Land database from the European
Centre for Medium-Range Weather Forecasts (Muñoz Sabater et al., 2021). This reanalysis
dataset combines weather observations from around the world with a model to generate
gridded (0.25-by-0.25 degrees), hour-by-hour temperature measurements. We compile all
data since 2000 and aggregate observations to the one-by-one degree grid-cell level.

We use these data to measure exposure to killing degree days in each grid cell i and
year t:

KDDit =
∞∑

s=T kill

hours(s, s+ 1)

24

(
s+

1

2
− T kill

)
(6)

where s sums over temperature increments, hours(s, s+1) measures the number of hours
spent between s◦ C and s + 1◦ C, and T kill is the temperature above which agricultural
productivity begins to decline.4 In words, KDDit captures the number of fractional degree
days in excess of T kill. As our baseline, we set T kill = 32◦ C, but we show results using
different temperature thresholds.

4In practice, the data on temperature exposure are top-coded at 45 C. We treat all hours in excess of 45 C as
having the temperature 45.5 C.
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Figure 1: The Global Arc of Deforestation

120°W  60°W   0°  60°E 120°E

Arc of Deforestation

Deep Forest

Non−Forest

Notes: This figure shows our categorization of the world’s forests at the start of our sample period in 2001.
Each square is a one-by-one degree grid cell, our main unit of analysis. Squares colored gray (“Non-Forest”)
have less than 50% tree canopy cover according to the measure of Hansen et al. (2013), and squares colored
blue (dark or light) have more. We partition this latter category into the Arc of Deforestation (dark blue)
and Deep Forest (light blue) based on distance to the Non-Forest, as described in the main text.

Prior work has documented that extreme heat exposure—and, in particular, killing de-
gree days (KDDs) in excess of particular temperature thresholds—is the main mechanism
through which temperature affects agricultural productivity (Schlenker and Roberts, 2009;
Butler and Huybers, 2013; Hultgren et al., 2025). We validate this measurement strategy
in our own context by showing that increases in KDD exposure at the grid cell level causes
substantially declines in cropland NDVI, which measures plant health (Figure A.1), even
in cropland that is far away from forested areas.

3.3 The Global Arc of Deforestation

The economic mechanisms by which temperature change affects deforestation via agri-
cultural expansion are most plausible at the edge of major global forests. Far outside the
forest edge, there is little forest to cut down or scope for expanding cropland onto forested
area. Deep inside the forest, there is little agricultural production or scope for expansion.

Therefore, for most of our analysis, we focus our attention on the “Global Arc of
Deforestation” at the edge of the world’s forests. To define this concept, we first define
major global forests as all grid cells with greater than 50 percent forest cover in any given
year. We then denote the forested area within two grid cells (i.e., within 2 degrees, or
about 220 km at the equator) of any global forest border as the Arc of Deforestation. We
refer to the remaining forested area as the deep forest.

Figure 1 displays the categorization of all grid cells at the start of our sample period in
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2001. The Arc of Deforestation is displayed in dark blue and the deep forest is displayed
in lighter blue. The edges of the world’s major tropical forests, including the Amazon and
Congolian Rainforests, are clearly visible in dark blue, in addition to many tropical forests
in Southeast Asia and boreal forests in Canada, Russia, and Northern Europe.

While the Arc of Deforestation displayed in Figure 1 is our main definition, we also
explore sensitivity to changing the threshold for defining a cell as the forest (i.e., using 30
or 80 percent forest cover instead of 50) and fixing the Arc of Deforestation at the start or
end of the period instead of allowing it to change dynamically as forest cover evolves. We
also show that our results are qualitatively similar if we use all forested grid cells as the
regression sample instead of restricting attention only to the Arc of Deforestation.

4 Main Results

We now present our main results regarding the effect of temperature shocks on deforesta-
tion. We find that extreme heat exposure increases deforestation. The effect persists for
several years, is larger in tropical regions, and is driven in part by fire setting.

4.1 Empirical Strategy

To take our motivating question to the data, consider equation (4), which states that the
change in forest should be related to the change in productivity. The empirical analogue
of equation (4) is our main regression specification:

Deforestationit = β∆KDDit + γi + χc(i),t + ϵit (7)

where i indexes one-by-one degree grid cells, t indexes years, and Deforestationit and
KDDit are defined in Sections 3.1 and 3.2, respectively. γi and χc(i),t are fixed effects at the
grid cell and country-by-year level. Standard errors are first-level administrative divisions,
which typically correspond to states or provinces within countries.5,6

Our baseline model uses place- and year-specific variation in temperature extremes to
isolate causal effects of temperature shocks while sweeping out possible confounds. The
inclusion of place fixed effects absorbs, in this first-differences model, place specific linear
trends.7 The inclusion of country-by-time fixed effects allows us to absorb country-specific

5We assign grid cells to the country and sub-region that encompasses the largest share of their area.
6While our main specification is estimated in first differences, our baseline results are qualitatively and
quantitatively similar when estimated in levels (Figure A.2, which mirrors Figure 2).

7Jones et al. (2025) show that failing to account for these trends can lead to spurious correlation between
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(not just global) time trends in warming and deforestation. In particular, this allows us
to capture any country-level changes in policy or policy enforcement, which have been
shown to affect deforestation (Burgess et al., 2025), and isolate the effect of extreme heat
fluctuations across cells within the same county.

The coefficient of interest is β. If β > 0, increases in extreme heat exposure lead to
more deforestation. This would be consistent with the “entrenchment case” (or “Borlaug
hypothesis”), in which higher (lower) agricultural productivity leads to less (more) defor-
estation. If β < 0, increases in extreme heat exposure lead to less deforestation. This would
be consistent with the “reallocation case,” which predicts the opposite relationships.

To study dynamics—which is important both to verify that there are no pre-existing
trends and to capture the full effect of extreme heat on deforestation, which could take
several years to accumulate—we estimate the following version of the model that includes
leads and lags of the independent variable:

Deforestationit =
K∑

j=−L

βj∆KDDi,t−j + γi + χc(i),t + ϵit (8)

where the βj are leads and lags of extreme heat exposure. When j < 0, the βj capture
pre-existing trends in the relationship between changes in extreme heat exposure and
deforestation (“leads”); when j > 0, the βj capture the extent of persistence in the effect
of extreme heat shocks on deforestation (“lags”). Each coefficient represents the marginal
effect of extreme temperature changes conditional on the changes in other years. When
estimating the total effect of extreme heat on deforestation using (8), we also report

∑K
j=0 βj ,

which captures the total effect of a permanent KDD shock at time t on deforestation from
t through t+K.

4.2 Main Estimates: Extreme Heat and Deforestation

Figure 2 presents our baseline dynamic estimates from a version of equation (8) that
includes the contemporaneous change, four leads, and four lags (K = L = 4). We
find a positive and significant effect of extreme heat shocks on deforestation (dark blue
estimates), both in a model with place and time fixed effects (Figure 2a) and in a model
with place and country-by-time fixed effects (Figure 2b). The positive effect emerges in the
year of the extreme heat shock and remains at a similar magnitude for the following two
years, before declining in the third and fourth years after the shock. This finding rules out
the hypothesis that deforestation is merely “re-timed” in response to changes as a form of

extreme temperature exposure and economic outcomes.
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Figure 2: Extreme Heat Causes Deforestation
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(a) Cell and Year Fixed Effects
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(b) Cell and Country-Year Fixed Effects

Notes: This figure presents the dynamic effects of extreme heat exposure on deforestation. Each sub-figure
reports estimate of equation (8) on two different samples: the Arc of Deforestation, in dark blue, and areas
outside the forest, in light blue (see Section 3.3). In addition to the leads and lags of killing degree days,
the estimates in Figure 2a include grid cell and year fixed effects and the estimates in Figure 2b include
grid cell and country-by-year fixed effects. Error bars are 95% confidence intervals based on standard errors
clustered by first-level administrative division (states within countries).

intertemporal substitution. Instead, changes have a permanent effect on forest cover that
is neither mitigated nor reversed in the future. The dynamic model in Appendix Section
B highlights how any convexity in the cost of deforestation generates this pattern in which
the deforestation response to a persistent shock is spread over multiple years.8

All leading coefficient estimates are close to zero and statistically insignificant. This
suggests that the main estimate is not driven by pre-existing trends that affect both extreme
heat and deforestation and, moreover, rules out anticipation effects. There is no effect of
extreme heat exposure on deforestation in non-forest area (light blue estimates), where
opportunities for land expansion are likely more limited.

This result does not seem to be driven by units or choice of econometric specification.
We obtain quantitatively and qualitatively similar estimates when the outcome and re-
gressor are in levels rather than first differences (Figure A.2). We obtain the same sign
and time pattern when using the logarithm of deforestation as the outcome (Figure A.3),
indicating that extreme heat exposure leads to more deforestation not just in absolute but

8Killing degree day shocks do, in fact, have a persistent component; in particular, on average 20% of each
shock to KDD remains in the following year and 18% remains after four years (Figure A.4). Thus, in
expectation, a KDDit shock in this year predicts higher killing degree days in future years.
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Table 1: Extreme Heat Causes Deforestation: Cumulative Effect and Sample Splits

(1) (2) (3) (4) (5)
Arc of Deforestation Non-Forest

All All Tropics Non-Tropics All
Panel A: Contemporaneous Effect

∆KDD 0.00196∗∗∗ 0.00253∗∗∗ 0.00331∗∗∗ 0.00033 -0.00001
(0.00067) (0.00071) (0.00081) (0.00059) (0.00002)

Observations 45885 45587 19621 25966 230558
R-squared 0.448 0.513 0.591 0.400 0.424

Panel B: Cumulative Effect
Sum of ∆KDD 0.02534∗∗∗ 0.02331∗∗∗ 0.02634∗∗∗ 0.01083∗∗ 0.00018

(0.00496) (0.00538) (0.00653) (0.00419) (0.00021)
Observations 48875 48564 20826 27738 243756
R-squared 0.430 0.497 0.575 0.383 0.413
Grid-Cell FE Yes Yes Yes Yes Yes
Year FE Yes No No No No
Country-Year FE No Yes Yes Yes Yes

Notes: This table reports the effects of extreme temperature changes on deforestation. Panel A reports
estimates of equation (7). Panel B reports estimates of equation (8) for j between −L = 0 and K = 4, where
“Sum of ∆KDD” corresponds to the sum of coefficients: β0 + β1 + β2 + β3 + β4. The set of included fixed
effects is listed at the bottom of each column and the sample is noted at the top. The Tropics are defined
as all grid cells that fall between the Tropic of Cancer and the Tropic of Capricorn, and the Non-Tropics
as the complement. The Arc of Deforestation is defined in Section 3.3 to identify the edge of the world’s
forests, and the Non-Forest denotes grid cells with less than 50% tree cover. Standard errors, reported in
parentheses, are clustered by first-level administrative division (states within countries).

also in relative terms.
Table 1 probes the precision and magnitude of these estimates in greater detail. Panel

A reports estimates of equation (7), i.e., only the contemporaneous effect of extreme heat
on deforestation. We find that β > 0 at a high degree of statistical significance, in a model
with place and time fixed effects (column 1) and in a model with place and country-by-time
fixed effects (column 2). The effect is much larger in magnitude for the tropics (column
3) than the non-tropics (column 4), where we define the tropics as the area between the
Tropic of Cancer, 23.5◦ N, and the Tropic of Capricorn, 23.5◦ S. Again, there is no effect of
extreme heat exposure on deforestation in non-forest area, as we define it (column 5).9

We next investigate the cumulative effect of an increase in extreme heat by estimating

9This is not mechanical; recall our definition of “non-forest” are 1 degree by 1 degree grid cells (i.e. about
110km by 110km at the equator) that are less than 50 percent forested, so it is possible there can be isolated
pockets of forest even within these pixels that could be affected.
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Figure 3: Long Difference (Decadal) Estimates
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Notes: This figure reports long-difference estimates in which the unit of observation is a cell-decade pair. The
Arc of Deforestation is defined in Section 3.3 to identify the edge of the world’s forests, and the Non-Forest
denotes grid cells with less than 50% tree cover. Grid cell and country-by-decade fixed effects are included.
Error bars are 95% confidence intervals based on standard errors clustered by first administrative division
(states within countries).

equation (8) with the contemporaneous effect, four lags (K = 4), and no leads (L = 0).
Table 1, Panel B, reports the sum of the coefficients from this model. The sum of coefficients
is roughly ten times the contemporaneous effect alone (column 1), again suggesting that
effects build up substantially over time. The effect size is similar after isolating within-
country variation by including country-year fixed effects (column 2). The cumulative
effect remains larger in the tropics compared to the non-tropics (columns 3-4); but, unlike
in the purely contemporaneous analysis (Panel A), we detect a positive and significant
effect outside of the tropics as well.

Long-Difference Estimates. As an alternative strategy to capture the long-run effect of
extreme heat on deforestation, we estimate a stacked long difference in which we aggregate
both the right and left-hand sides of equation (7) to the decade level (2000s and 2010s)
and estimate it as a two-decade panel with place and decade fixed effects. This estimating
equation is equivalent to (7), except t indexes decades instead of years. We obtain a
coefficient estimate that is very similar to the sum of the lagged effects in Panel B of Table
1 (Figure 3, bar 1). This is further evidence that the effect of extreme heat shocks on
deforestation persists and is not undone by subsequent land use changes.10 We continue

10We also find no evidence of pre-existing trends in the long-difference specification, though since we only
have two decades, we use a different strategy to check for this since we cannot plot detailed event studies.
In particular, we find no evidence that extreme heat in the 2010s is associated with deforestation in the
2000s (Figure A.5) i.e., deforestation in the current decade is uncorrelated with extreme heat exposure in
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to find no evidence that extreme heat affects tree loss away from major forests (bar 2).

Alternative Measurement Strategies. We conduct a range of sensitivity analyses of the
measurement approach in our baseline results. First, to make sure that the results are not
driven by some specific feature of the Hansen et al. (2013) data, we present qualitatively
similar results using independent deforestation data from the ESA (Table A.1).

Second, we show that the results are very similar using alternative definitions of the
Arc of Deforestation (Table A.2). This includes defining forested grid cells as those with
either 50% (baseline), 30%, or 80% forest cover (columns 1-3), as well as holding the arc
constant throughout the sample period (columns 4 and 5). The results are also similar if
we use different sized geographic units within the Arc of Deforestation (Table A.3).

Third, we show that the baseline results are very similar (albeit slightly attenuated)
when we use all forested grid cells as the regression sample (Table A.4). Thus, the results
do not hinge on restricting attention to the Arc of Deforestation, as we define it.

Fourth, we show that the results are qualitatively similar if we use different thresholds
for T kill when defining KDD and measuring extreme heat exposure (see equation 6). The
coefficient estimates increase for higher values of T kill, consistent with exposure to higher
temperatures having a larger negative effect on crop productivity (Figure A.6).

Finally, to rule out the possibility that the results are picking up spurious correlation
with trends in warming (i.e., trends in the first difference of temperature), we show that
the results are similar if we include grid cell specific linear trends as controls (Table A.5).
This is consistent with the stark timing of the effects displayed in Figure 2, which would
be inconsistent with an effect driven by low-frequency trends.

Ruling Out Alternative Mechanisms. In the next section (Section 5) we argue that
agricultural expansion is an important mechanism linking temperature extremes to de-
forestation. Before turning to that analysis, we rule out alternative potential channels.

One possibility is that the main results capture, in part, the effect of deforestation in
nearby regions on temperature extremes. Recent work has shown that tree cover can affect
weather patterns in down-wind locations (Grosset-Touba et al., 2024) and, most related,
Araujo et al. (2023) show that deforestation in the Amazon can lead to further forest loss
downwind due to changes in air moisture. To rule out that this is affecting our results,
we follow the method of Araujo et al. (2023) to construct a measure of each grid cell’s
exposure to upwind forest loss (see Appendix C.1). We then control for this measure in
estimates of equations (7) and (8). The estimates are very similar to our baseline results,
indicating that this mechanism does not drive our findings (see Table A.6).

the future decade.
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A second possibility is that our baseline results are capturing direct negative effects of
extreme heat on tree health and not human-led deforestation. In the model, this would
be captured by extreme heat reducing the cost of deforestation in equation (3). There
are several reasons, however, why this mechanism by itself would be inconsistent with
the data. First, while this mechanism might explain a contemporaneous relationship
between extreme heat and forest loss, it is harder to rationalize how this would lead to
additional forest loss for several years (Figure 2). Second, returning to the data on NDVI,
we find no evidence that extreme heat reduces NDVI (i.e., worsens tree health) in the deep
forest (Figure A.7), suggesting that extreme heat, as we measure it, does not lead to tree
“browning” or vegetation loss in regions that are less affected by human activity. Finally,
we estimate our main specification in the deep forest and find no evidence that extreme
heat affects forest loss there (Figure A.8, third bar), again indicating that extreme heat only
affects tree loss in areas with more substantial human activity. More generally, natural
forest fires and other forms of non-anthropogenic tree loss in tropical rain forests—the
regions that drive our baseline results (see Table 1)—are rare due to high levels of moisture
in the environment (e.g., Cochrane, 2003; Andela et al., 2022).11

4.3 Extreme Heat and Fire Setting

We next study the effect of extreme heat on fire setting. We do this for three reasons. First,
fire setting is an entirely independent measure of land clearing, constructed from different
underlying data and image detection methods. This makes it useful validation of our
baseline results. Second, forest burning is a particularly damaging form of deforestation
because it increases local air pollution and contributes more to carbon emissions. In
particular, we note that carbon emissions from tropical forest burning can at their peak be
of the same order of magnitude as emissions from global fossil fuel use (e.g., Page et al.,
2002). Finally, fire setting is often used to clear land specifically for agriculture due to its
short-term soil fertility benefits and the fact that it fully clears the forest floor.

Figure 4a reports estimates of equation (8) in which the outcome variable is the share of
burned area in the grid cell. We find that the negative agricultural productivity shock leads
to a large, positive contemporaneous effect on burning in the Arc of Deforestation (darkest
blue). The lagged estimates suggest that burning does not return fully to its baseline level
over the subsequent several years, consistent with the effect on deforestation persisting for
several years after the original shock. Comparing these estimates to our main event study

11Voiland (2023), a recent NASA Earth Observatory report, writes “In the absence of human activity, fires
would not burn in the heart of the Amazon rain forest.” Andela et al. (2022) note that “nearly all” fires in
the Amazon basin are started by humans.

18



Figure 4: Extreme Heat and Fire Setting
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(b) Emissions from Fires

Notes: This figure reports estimates of equation (8) in which the outcome variable is the share of burned
area (Figure 4a) and log of estimated carbon emissions from burning (Figure 4b). In Figure 4a, we report
separate estimates for grid cells in the Arc of Deforestation and outside the forest. All specifications include
grid cell and country-by-year fixed effects. Error bars are 95% confidence intervals based on standard errors
clustered by first administrative division (states within countries).

(Figure 2), burning seems to account for roughly one third of the total deforestation effect,
and it is concentrated even more in the year of the shock. We again find no evidence of
pre-existing trends and little evidence of an effect in deeper in the forest where there is
less agricultural activity (light blue). While the contemporaneous and lagged coefficient
estimates in the deep forest are positive, they are statistically insignificant and much
smaller in magnitude than the effects in the Arc of Deforestation. This suggests that the
effect in the Arc of Deforestation is not due to natural causes (e.g., the effect of heat on
forest fires) but instead due to human activity.

Figure 4b reports estimates of equation (8) in which the outcome variable is log of total
carbon emissions from fires. There is a positive and large contemporaneous effect, which
declines in magnitude in subsequent years. This pattern is consistent with denser forested
areas and a large share of the organic material being burned in the first year, while burning
in subsequent years is for clearing whatever forest remains or increasing soil fertility. The
coefficient estimates imply that a one-KDD shock in a given year increases cumulative
carbon emissions from fires by over 4%.
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4.4 International Spillovers and “Forest Leakage”

So far, we have focused on the relationship between local extreme heat exposure and
local deforestation. However, as highlighted by the model, extreme heat can also affect
deforestation through global price spillovers (see also Farrokhi et al., 2025). In particular,
extreme heat in cell j could affect deforestation in cell i to the extent that lower output in
j affects output prices for i.

To investigate this possibility, we measure the extent to which heat shocks elsewhere
in the world affect the crops that a given location grows. In particular, we measure

∆KDDSpillover
it =

∑
crop k

Areaik ·

∑
j /∈c(i)

Areajk∑
ℓ/∈c(i) Areaℓk

∆KDDjt


︸ ︷︷ ︸

Average shock to crop elsewhere in world
(excluding own country)

(9)

where Areaik is the area devoted to crop k in cell i, measured using the EarthStat database
(Ramankutty et al., 2008) in 2000 (i.e., just prior to our study period). This measure takes
on higher values in years when foreign extreme heat shocks hit cells that also cultivate
locally grown crops and takes on lower values when foreign extreme heat shocks happen
to hit cells that do not cultivate locally grown crops. In the absence of disaggregated,
sub-national data on agricultural prices, this measure proxies for the price effects that
determined spillovers in the model (Section 2); Hsiao et al. (2025) validate that, at a more
aggregated level, a similarly constructed measure of killing degree day exposure on areas
planting specific crops predicts world price spikes.

We then estimate an augmented version of our baseline specification that also accounts
for foreign spillovers:

Deforestationit =
4∑

j=0

βj ·∆KDDi,t−j +
4∑

j=0

τj ·∆KDDSpillover
i,t−j + γi + χc(i),t + εit (10)

where now the βj capture the effect of local extreme heat on deforestation and the τj

capture the effect of global spillovers. The fact that we exploit differential exposure to
foreign shocks across producers of different crops makes it possible to include country-
by-time fixed effects χc(i),t in the regression, which fully absorb all aggregate fluctuations
in heat and deforestation.

Estimates of equation (10) are reported in Figure 5. The first column reports the
sum of the βj (i.e., the effect of local extreme heat exposure after controlling for global
spillover effects). The estimate is positive, significant, and similar in magnitude to our
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Figure 5: (Lack of) Spillover Effects
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Notes: This figure reports estimates of equation (10). The first and fourth bars report the sum of the βj ; the
second and fifth bars report the sum of the τj ; and the third and sixth bars report the sum of both the βj and
τj . In the first set of three bars, the extreme heat spillover is exactly as described in equation (9), while in the
second set of three bars we slightly modify it to include extreme heat shocks in other grid cells in the same
country. Error bars are 95% confidence intervals based on standard errors clustered by first administrative
division (states within countries).

main specification (Table 1), suggesting that our baseline result is not affected by taking
spillover effects into account. The second column reports the sum of the τj (i.e., the
effect of global spillovers). The effect is positive, but small in magnitude and statistically
indistinguishable from zero. The third column reports the sum of local and spillover
effects and is (intuitively) similar to but slightly larger than the first bar.

Our baseline measure of extreme heat spillovers excludes data from the country in
which the grid cell is located. The goal of this approach is to avoid any contamination
between the local and global shocks; however, to the extent that the cultivation of specific
crops is concentrated in certain countries, this baseline measure may miss an important
component of spatial spillovers. To address this issue, the second set of three bars in
Figure 5 repeats the same set of estimates except the spillover measure includes shocks to
other grid cells in the same country. The results are very similar. Together, these results
suggest that “forest leakage” is quantitatively limited and does not seem to meaningfully
mediate our results to the degree we can measure it here.
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5 Mechanisms: The Borlaug Hypothesis in Action

So far, we have shown that local extreme heat exposure leads to greater deforestation in the
Arc of Deforestation, i.e., the global frontier between agricultural lands and forests. This
is consistent with a model in which extreme heat reduces local agricultural productivity
but nonetheless leads to an expansion of farmland into previously forested areas due to
effects on (shadow) prices and/or costs of clearing the forest. In this section, we show
direct evidence of each step of that argument. First, we show that the deforestation
effects are concentrated in places with the largest heat-induced declines in crop yields by
exploiting variation across crops in heat sensitivity. Second, we show that the effects are
concentrated in places where food demand is likely to be inelastic. Third, we show direct
global evidence of cropland expansion.

5.1 Heterogeneity by Heat Sensitivity and Productivity Effects

We first document that the relationship between extreme heat and deforestation is particu-
larly pronounced in areas that cultivate crops that are most sensitive to heat. We interpret
this as evidence that this relationship is driven by declines in agricultural productivity,
which should be most pronounced for low-tolerance crops. To implement this test, we
exploit variation in temperature sensitivity across crops and variation in baseline cropland
allocations across locations, following methods introduced by Moscona and Sastry (2023).

First, we measure crop-specific temperature sensitivity using data from the United Na-
tions Food and Agriculture Organization’s EcoCrop database. The EcoCrop data provide
information about growing conditions for 2,500 agriculturally important plants, includ-
ing tolerance ranges for temperature. The key piece of information for our analysis is
the reported upper temperature threshold for optimal growing.12 As examples, wheat
(23◦C), barley (20◦C), and potatoes (25◦C) are among the least temperature tolerant crops
in our sample, while maize (33◦C), sorghum (35◦C), sugarcane (37◦C), and cotton (36◦C)
are among the most. Second, we measure the share of each grid cell’s land devoted to
each crop using the Earthstat database (Ramankutty et al., 2008). These data were created
by combining the most detailed census data available for each region with crop-specific
potential yield data to construct a 5-by-5 minute grid of the area devoted to each crop circa
2000. We aggregate these data to the one-degree grid level to measure pre-period crop
shares.

12This database has been used extensively in agronomics and climate science to estimate crop-specific effects
of climate change (e.g., Ramirez-Villegas et al., 2013; Hummel et al., 2018). The data are originally compiled
from expert surveys and, where possible, from textbooks.
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Using these two sources of data, we construct a grid cell-level measure of temperature
tolerance as:

Temperature Tolerancei =
∑
k

Shareki · Tmax
k (11)

where Shareki is the share of land in i that is devoted to crop k according to Earthstat and
Tmax
k is the optimal temperature range upper bound of crop k according to Ecocrop. We

then estimate an augmented version of equation (8) by interacting the extreme heat shocks
with indicators for the bottom quartile and top three quartiles of temperature tolerance:13

Deforestationit =
K∑

j=−L

[
βj ∆(KDDi,t−j × Lowi) + ωj

(
∆KDDi,t−j × Highi

)]
+ γi + χc(i),t + ϵit

(12)

where Lowi and Highi are indicators for low (bottom quartile) and high temperature
tolerance locations, respectively. If the main results are driven by declines in agricultural
productivity causing land expansion, we would expect the results to be driven by the
areas that cultivate crops that are most sensitive to extreme heat. Note also that these
results include country-by-year fixed effects, so any estimated effects do not simply reflect
differences across different parts of the world.

Our estimates are reported in Figure 6a, which plots the effect of temperature shocks
in high and low temperature tolerance locations. The effects are an order of magnitude
larger for areas that cultivate low-tolerance crops (dark bars). While we also estimate a
positive effect on deforestation for the remainder of the sample (light bars), the effect is
much smaller in magnitude. We find no evidence of pre-existing trends in either case.

Thus, extreme heat shocks seem to cause deforestation in precisely the areas where they
have the largest negative effect on crop productivity, providing evidence for agricultural
productivity as a key mechanism driving deforestation, as in the framework in Section
2. This finding dovetails with our earlier finding that the effect of killing degree days
is larger as we choose higher temperature thresholds (Figure A.6), since prior work has
documented that crop damage scales with temperature (Schlenker and Roberts, 2009).

13The cut-off between these groups is 29.5◦C, so areas that exclusively grow any of the low-tolerance or
high-tolerance crops mentioned earlier (wheat, barley, or potatoes versus maize, sorghum, sugarcane, or
cotton) would be respectively categorized as low and high.
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Figure 6: Mechanisms and Heterogeneity
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(b) Heterogeneity by Demand Elasticity

Notes: Each panel reports estimates of equation (12), in which leads and lags of ∆KDD are interacted with
indicators for a “high” or “low” attribute. In panel (a), “Lowi” corresponds to the bottom quartile of local
average temperature sensibility (as described by equation 11) and high to the top three quartiles. In panel
(b), “Lowi” corresponds to the bottom quartile of the local average food demand elasticity (as described by
equation 13). Both models also include grid cell and country-year fixed effects, and the sample is restricted
to grid cells within the Arc of Deforestation (see Section 3.3). Error bars are 95% confidence intervals based
on standard errors clustered by first administrative division (states within countries).

5.2 Heterogeneity by Demand Elasticity

Our model in Section 2 emphasized that crop price changes are an important mechanism
linking adverse productivity shocks to deforestation. Existing work has already docu-
mented that crop-level exposure to extreme heat substantially increases crop prices at the
country-by-crop level (Hsiao et al., 2025; Crews et al., 2025), consistent with the sign of our
main result. We investigate this mechanism in greater detail by exploiting heterogeneity
in price elasticities across space. When demand is inelastic, a negative local productivity
shock should lead to larger local price increases, leading to greater incentives to clear land
for agricultural production. When demand is elastic, on the other hand, prices are less
responsive and less likely to compensate for the revenue loss due to lower physical output.
This reduces incentives to clear land following an adverse temperature shock.

The ideal data set for investigating this mechanism would be the specific product-level
demand elasticity for each grid cell in our sample. However, since those data do not exist,
we construct a proxy for local demand elasticities using data from the USDA Commodity
and Food Elasticities database. This database compiles demand elasticity estimates from
published studies, covering 117 countries and many crops (or groups of crops). We
combine these data with pre-period planting patterns from Earthstat, to construct a proxy
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for the food demand elasticity of each grid cell:

Elasticityi =
∑
k

Shareki · Elasticityk,c(i) (13)

where Shareki is the pre-period share of land in i that is devoted to crop k according to
Earthstat and Elasticityk,c(i) is the average demand elasticity for crop k in country c across
reported estimates in the USDA database. This proxy based on country-by-crop estimates
is imperfect. For instance, it could over-state the elasticity of demand in a particularly
isolated region of a country that is otherwise open to trade, or under-state the elasticity
in a country that is closed as a whole but has very integrated within-country markets.
Nonetheless, we argue that it is the best measure available at the desired (global) scale.

Our empirical model is the same as equation (12), but with Lowi representing places
in the bottom quartile of the distribution of Elasticityi. If local price effects induced by
negative productivity shocks are driving our results, we would expect more pronounced
effects in regions with less elastic demand.

We find that extreme heat has a significantly larger marginal effect on deforestation
in low-elasticity regions (Figure 6b). While there is also a positive effect in high-elasticity
regions, it is smaller in magnitude and only persists for two years following the original
shock. This pattern is consistent with the theoretical predictions from Section 2.

As a secondary approach to identify the effect of differences in demand elasticity, we
estimate our baseline specification on grid cells of varying sizes. Demand is plausibly
more inelastic in larger geographic units compared to smaller ones, which can more easily
trade among themselves following a shock.14 Table A.3 presents our baseline results (Table
1, Panel B) alongside equivalent results estimated at the level of five-by-five degree grid
cells and years. The results estimated on the sample of larger grid cells (Panel B) are
consistently ∼ 30% larger in magnitude than our baseline results (Panel A). While more
suggestive, this pattern is also consistent with the predictions of the model.

14This approach is related to that of Moscona (2019), which estimates the effect of exogenous changes to
agricultural productivity on structural change across both sub-national districts in India and countries.
Comparing these sets of estimates sheds light on the key theoretical mechanism linking agricultural
productivity shocks to changes in the allocation of land and labor.
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5.3 Global Cropland Expansion

We next show directly that extreme heat shocks induce cropland expansion. Using the
global land cover data from the ESA, we calculate, for each grid cell i and year t,

CroplandExpansionit = 100 ·
CroplandAreait − CroplandAreai,t−1

Areai

(14)

where CroplandAreait is the measured land cover of cropland in year t and Areai is the
land area of the grid cell. Thus, our measure is in units scaled to the size of the grid cell
(in percent values from 0 to 100), and therefore is directly comparable to our measure of
deforestation defined in equation (5).

Identifying cropland using satellite imagery is more challenging than identifying
forested area for several reasons. Forests are often dense with continuous canopy cover
which, combined with the fact that tall and woody vegetation has a characteristic re-
flectance profile, make them relatively straightforward to detect. Cropland, on the other
hand, changes spectral signature dramatically over the course of the year and growing
season, and is not as distinct from surrounding pasture or vacant land. Moreover, the spec-
tral signature can vary across crops, land management practices, and field size, making
identifying changes in cropland challenging.

We first estimate the dynamic relationship between heat shocks and cropland expan-
sion: that is, equation (8) with CroplandExpansion (equation 14) as the outcome. We
find that extreme heat leads to cropland expansion in the Arc of Deforestation (Figure
7a). This effect emerges in the year after the extreme heat shock and persists for several
years (dark blue estimates). The finding that cropland expansion is a relatively slower
process than deforestation or fire starting (Figures 2 and 4)—i.e., that cropland expansion
starts the year after the shock, while deforestation and fire starting begin in the year of the
shock—is consistent with the hypothesis that it takes time to convert recently cleared land
into farms and that forest has to be cleared before the land can be used for crop agriculture.
We find no evidence of pre-existing trends and/or anticipation effects, and no evidence of
cropland expansion away from forested areas where opportunities to clear new land are
likely more limited (light blue estimates). Consistent with our deforestation results, the
effect of extreme heat on cropland expansion is driven by tropical regions (Figure 7b); in
fact, we find no evidence that extreme heat causes cropland expansion (as we measure it)
outside of tropical countries.

To better capture these delayed dynamic effects, we revisit our long-difference analysis
at the grid-cell-by-decade level. Our results, reported in Figure 8, suggest large long-run
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Figure 7: Extreme Heat Causes Cropland Expansion: Dynamic Estimates
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Notes: This figure presents the dynamic effects of extreme heat exposure on cropland expansion, defined as
in equation (14) using land cover data from the European Space Agency (ESA). The regression equation is
a variation of equation (8) with cropland expansion as the outcome. Figure 7a reports estimate of equation
(8) for both grid cells in the Arc of Deforestation (dark blue) and grid cells outside the forest (light blue).
Figure 7b reports estimate of equation (8) for both grid cells in the Arc of Deforestation in the tropics (dark
blue) and grid cells in the Arc of Deforestation outside the tropics (light blue). In addition to the leads and
lags of killing degree days, all estimates include grid cell and country-by-year fixed effects. Error bars are
95% confidence intervals based on standard errors clustered by first administrative division (states within
countries).

effects of extreme heat on cropland expansion (bar 2) that are of comparable magnitude, in
the same land area units, to our earlier findings regarding deforestation (bar 1, reprinting
the estimate from Figure 3 for reference). As in our annual estimates, the effect is larger in
the tropics than outside the tropics (third and fourth bars) and zero outside of the forest or
Arc of Deforestation, where opportunities to clear new land are limited (fifth bar). Taken
together, these results support the interpretation that temperature extremes simultane-
ously induce deforestation and cropland expansion at the edge of tropical forests.

6 Land Use and Input Adjustment: Evidence from Brazil

The analysis thus far has shown that extreme heat leads to more deforestation in the
agricultural frontier. Using global satellite data we have shown evidence favoring the
“Borlaug hypothesis” mechanism described in Section 2. In particular, we find larger
effects in locations suitable for crops that are more temperature sensitive and where
demand is more inelastic, and we directly show that cropland indeed expands in the years
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Figure 8: Extreme Heat Causes Cropland Expansion: Long-Run Estimates
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Notes: Each bar reports a separate estimate of equation (7) estimated as a “stacked long difference,” with two
time periods corresponding respectively to the 2000s and 2010s, and with grid-cell and decade fixed effects.
For bar 1, the outcome is deforestation measured from the data of Hansen et al. (2013). For bars 2-5, the
outcome is cropland expansion based on the ESA data (Zanaga et al., 2021). Each of these columns varies
the sample of the analysis, reported beneath the horizontal axis. Error bars are 95% confidence intervals
based on standard errors clustered by first administrative division (states within countries).

after the initial temperature shock.
To probe these effects on agricultural land and input use in more detail, we focus

on a deforestation hotspot in which we can study additional agricultural outcomes using
census data: Brazil. In particular, we use municipality-level data from the last three rounds
of the Brazilian Agricultural Census (1996, 2006, 2017) to study the effect of temperature
shocks on several margins of adjustment available to farmers, including but not limited to
cropland expansion.

In the census, we measure three variables of interest at the level of municipalities. The
first is the total land devoted to both cropland and pasture. The second is the amount
of labor devoted to agricultural production, measured in counts of workers. The third
is the value of agricultural production in the year of the census. Combining the three
census years into a panel, we estimate the following stacked difference model at the level
of municipalities i and census rounds t:

∆Outcomeit = β∆KDDit + γi + χt + ϵit (15)

where the differences are taken between each pair of adjacent censuses and (γi, χt) are,
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Figure 9: Extreme Heat and Agricultural Production in Brazil Using Census Data
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Notes: Each bar reports a separate estimate of equation (15) with municipality and decade fixed effects, and
weighted by total municipality area. In Figure 9a, the years included in the sample are 2001, 2010, and
2019 and the outcome variable is deforestation measured using data from Hansen et al. (2013). In Figures
9b and 9c, the years included in the sample are the Brazilian agricultural census years (i.e., 1996, 2006, and
2017) and each bar corresponds to a different outcome measured from the census, all of which are in log
differences, and reported below the x-axis. All specifications restrict attention to municipalities within the
Arc of Deforestation, defined as municipalities where a majority of the land area is covered by grid cells
in the Arc of Deforestation, using the definition from Section 3.3. Error bars are 95% confidence intervals
based on standard errors clustered at the municipality level.

respectively, municipality and time fixed effects. We focus on Brazilian municipalities that
are in the Arc of Deforestation by our definition, of which there are about 800 in 2017.

We first reproduce our baseline results on the relationship between deforestation using
this empirical framework. Since the Hansen et al. (2013) deforestation data do not exist for
1996, the first Brazilian Agricultural Census round in our sample, we modify (15) slightly
to include the years 2001, 2010, and 2019 instead of 1996, 2006, and 2017, but still match
the decadal frequency of the panel. The estimates are presented in Figure 9a. Consistent
with our baseline results, we find a positive effect of killing degree days on deforestation.
This effect is restricted to municipalities in the Arc of Deforestation (bar 1) and we find no
evidence of tree cover loss in response to extreme heat away from forested areas (bar 2).

We next investigate how exposure to extreme heat affects agricultural land use using
census data. We find that extreme heat drives substantial cropland expansion (Figure
9b, bar 1). One additional KDD per year increases cropland area by 0.036 log points
over the decade (≈ 3.6%). By contrast, we find no significant evidence of pasture land
expansion (Figure 9b, bar 2). If anything, the coefficient estimate is negative, suggesting
that some of the cropland expansion may come at the expense of pasture land in addition
to forests. This suggests that heat-induced productivity losses are not a major driver of the
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expansion of ranching (particularly of cattle) in Brazil, which is a known major contributor
to Amazonian deforestation (Assunção et al., 2015; FAO, 2020) but plausibly less sensitive
than crop production to rising temperatures.

Do farms intensify production in other ways? The census allows us to also test the
effect of extreme heat on agricultural labor use, which has been the predominant focus
of existing work in macroeconomics studying the concentration of low-productivity agri-
culture in poor countries (Gollin et al., 2007) and the implications of climate change for
this phenomenon (Nath, 2025). We find no clear evidence that labor use expands, either
for crop production (Figure 9b, bar 3) or livestock (Figure 9b, bar 4). The estimates are
small in magnitude and statistically indistinguishable from zero. These results suggest
that land may be a special and particularly responsive input in the response of agricul-
tural production to climate change.15 This asymmetry of response between land and labor
could arise if extreme heat is a non-neutral shock to the agricultural production function
(i.e., it differentially affects the demand for land and labor) and/or if extreme heat has
independent effects on the costs of clearing land (e.g., the cost channel in Section 2).

Next, we estimate a negative effect on the value of crop production despite this expan-
sion of activity (Figure 9c, bar 1). That is, even though farmers expanded the area under
cultivation in response to rising extreme heat exposure, total output declined. Land pro-
ductivity, defined as production value per unit of area, declines to an even greater extent
(bar 2), consistent with greater land area devoted to cropland and expansion of production
into ex ante more marginal land. The output and productivity of livestock production are
both unaffected by extreme heat exposure (Figure 9c, bars 3-4), consistent with our finding
of little pasture land adjustment in response to extreme heat exposure.

Finally, we investigate how the main result on cropland expansion varies by farm
size. One possibility is that the result is driven by large farms, who are responding
to equilibrium price changes and also have the ability to marshal the necessary capital
resources for deforestation. Another possibility, however, is that smaller farms drive
the effect, potentially through an income effect channel. Figure A.9 reports the effect on
cropland separately for the farm size categories that are reported by the Census. The effect
is driven by the expansion of cropland in medium and large farms. Moreover, the small
and insignificant effects on the bottom two farm size categories suggest that the results
are not driven by small farmers clearing forest to recover lost revenue or income.

Together, these findings verify that extreme heat negatively affects crop productivity

15It would be interesting to explore the effect of extreme heat on other agricultural inputs beyond land and
labor (e.g., tractors, fertilizers). Unfortunately, these data were not collected systematically during the
sample period, and were not collected at all for the 1996 census wave, which is necessary for our stacked
differences empirical design.
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and that the expansion of agricultural inputs does not fully compensate for the lost produc-
tion. This would be consistent with a case of the model in Section 2 in which productivity
declines and local demand is at least partially elastic, so the quantity of agricultural goods
produced declines. This evidence would be inconsistent with a case of the model in which
the only effect of extreme heat is to lower the cost of clearing the forest, in which case we
would expect agricultural production to increase.

7 Quantification and Projections

We finally quantify the aggregate effect of extreme heat on deforestation using a simple,
back-of-the-envelope approach. We return to our baseline estimating equation and predict
temperature-induced deforestation using local extreme heat exposure:

̂Deforestationit =
4∑

j=0

β̂j∆KDDi,t−j (16)

where (β̂j)
4
j=0 are estimated regression coefficients. Predicted deforestation by this defini-

tion is in units of percent of a grid cell’s land area, and we aggregate this to calculate total
deforested area in hectares.

We conduct our analysis in the Global Arc of Deforestation, which our previous anal-
ysis suggests is the main frontier of temperature-induced agricultural expansion and
consequent deforestation. Motivated by our findings of heterogeneous effects in various
deforestation hotspots, we do separate analyses at three geographic levels: the world, the
tropics (i.e., areas between the Tropic of Cancer, 23.5◦ N, and the Tropic of Capricorn,
23.5◦ S), and Brazil. In each case, we separately estimate the coefficients (β̂j)

4
j=0 in the

respective region to better capture the region-specific effects of extreme heat on defor-
estation. Conceptually, we think of this heterogeneity as being determined by different
agricultural practices (e.g., how temperature tolerant are crops and/or how prevalent is
crop vs. animal agriculture), different market structures, and different costs of clearing
the world’s varied types of forest. These can be thought of as spanning heterogeneity in
the productivity effects, price effects, and cost effects identified in the model of Section 2.

The validity of the back-of-the-envelope approach rests on three primary assumptions:
the linear functional form of equation (16); the stability of other determinants of defor-
estation, modeled in the place fixed effects, country-by-time fixed effects, and residual of
our empirical model; and the stability of the key estimated regression coefficients that,
as mentioned above, embody the various economic mechanisms by which extreme heat
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Table 2: The Effects of Extreme Heat on Deforestation in the Arc
Arc of Deforestation in

World Tropics Brazil

Panel A:
In-Sample
2006-2019

Total Effect (million ha) 1.42 1.28 1.20
% of In-Sample Deforestation 1.33% 2.04% 8.17%
% of Initial Forest 0.12% 0.19% 0.99%

Panel B:
Out of Sample
2020-2099 (SSP245)

Total Effect (million ha) 28.1 30.3 19.7
% of In-Sample Deforestation 26.3% 48.1% 134%
% of Initial Forest 2.42% 4.57% 15.8%

Panel C:
Out of Sample
2020-2099 (SSP585)

Total Effect (million ha) 90.7 95.8 57.9
% of In-Sample Deforestation 84.8% 152.1% 393.6%
% of Initial Forest 7.8% 14.4% 46.3%

Notes: This table reports our predictions for the effect of extreme heat on deforestation. Panel A corresponds
to calculations in-sample, from 2006 to 2019, and Panel B and Panel C correspond to calculations out of
sample, based on Coupled Model Intercomparison Project Phase 6 (CMIP6) model at SSP245 and SSP585
scenario, respectively. The three columns correspond to analyses corresponding to the whole world, the
tropics, and Brazil. In each case, we restrict analysis to the Arc of Deforestation (see Section 3.3). The total
effect is reported in millions of hectares. The “% of In-Sample Deforestation” is reported as a percent of the
total forest loss according to Hansen et al. (2013) in the relevant area. This can exceed 100% when comparing
predicted climate-induced deforestation to observed deforestation. The “% of Initial Forest” is scaled to the
initial forested area in 2000 (Panel A) or 2023 (Panel B and Panel C).

affects deforestation. We note that all three assumptions are more likely to be valid for
in-sample analysis than for out-of-sample extrapolation to model probable future climate
change. We return to this point below in our discussion.

In-Sample Analysis. We first use the model to predict how adverse temperature shocks
affected global deforestation during the sample period (Table 2, Panel A). Extreme heat
exposure caused 1.42 million hectares of deforestation, an area roughly the size of Con-
necticut or Northern Ireland, or over one thousand square kilometers per year. The vast
majority took place in the tropics (1.28 million hectares) and in Brazil in particular (1.20
million hectares). Within the Arc of Deforestation, this effect of extreme heat accounts for
2% of all tropical deforestation and over 8% of all Brazilian deforestation. In the Brazilian
Arc of Deforestation, extreme heat exposure from 2005 to 2019 led to the destruction of
1% of all forest cover.

End-of-century Analysis. We next combine our estimates with temperature realization
projections through 2100 in order to better understand how future trends in extreme heat
exposure may accelerate global deforestation. To approximate future extreme heat expo-
sure, we use future temperature projections from an ensemble of global climate models
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from the Coupled Model Intercomparison Project Phase 6 (CMIP6; see Appendix C.2).
Following existing literature (e.g., Hultgren et al., 2025), we focus on shared socioeconomic
pathway (SSP) 2-4.5 as an approximation of a “middle of the road” scenario and SSP 5-8.5
as an approximation of a high emissions scenario. We then combine these projections
from each year with the coefficient estimates from our baseline panel specification in or-
der to quantify the impact of future warming on forest loss through 2100. The results are
presented in Table 2, Panels B and C.

By the end of the century, a middle of the road warming scenario implies that extreme
heat will lead to the deforestation of over 28 million hectares (Panel B). While this forest loss
takes place over a longer period of time than our regression sample, these estimates imply
that the annual rate of heat-induced deforestation will increase by roughly three fold. If
we instead assume a high emissions scenario, extreme heat will lead to the deforestation
of 90 million hectares. The effect is again stronger in the tropics, which will lose 5% or 14%
(depending on the emissions scenario) of its Arc of Deforestation through this mechanism.
The effects are again even starker in the Brazilian Arc, which will lose 16% or as much as
46% of its forest cover due to these land use adjustments to extreme heat. These numbers
are all large when compared to deforestation that has taken place to date; for example, the
more conservative estimates from Panel B imply that future heat-induced deforestation
will amount to 48% of tropical deforestation that took place from 2006 to 2019 and 134% of
Brazilian deforestation that took place from 2006 to 2019. Together, these findings suggest
that the rise in extreme heat exposure projected to take place in the coming decades could
lead to substantial forest loss and dramatically accelerate the current rate of deforestation.

Discussion. As noted above, the out-of-sample projections require a stronger set of as-
sumptions than the in-sample analysis. A key question is whether the observed relation-
ship between negative temperature shocks to agricultural productivity and deforestation
continues to hold in the future. As highlighted by the model in Section 2, this may not be
the case if either the marginal effect of extreme heat on agricultural productivity declines
in absolute value (e.g., if farmers around the world adopt more resilient technology), or if
prices become less responsive to local changes in agricultural productivity (e.g., if global
agricultural markets become more integrated).

While changes in both are possible, recent trends do not point in the direction of either.
First, Burke and Emerick (2016) find no evidence that the marginal effect of extreme
heat on crop productivity has declined over recent decades, and Moscona and Sastry
(2023) find that only a small share of the negative effect of extreme heat on agricultural
productivity has been mitigated by new technology development. Both papers focus on
the US, which may be the country where changes in production resilience are most likely,
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due to its role as a leader in agricultural biotechnology. Second, agricultural markets
have (if anything) become less (not more) integrated in recent years. This pattern may
continue as a growing number of countries promote self sufficiency in food production,
especially in tropical regions where the results are concentrated. In fact, recent evidence
suggests that global warming itself has led to a greater number of restrictions on trade
in agricultural commodities and lower overall trade volumes (Hsiao et al., 2025). This
suggests that there may be even larger effects of extreme heat on deforestation in the
future than there have been to date. Nevertheless, the end-of-century estimates should be
interpreted with greater caution than the estimates from the regression sample.

8 Conclusion

A large literature has arisen to investigate the impact of rising temperatures on agriculture,
concluding that heat causes severe damage to agricultural productivity when and where
it occurs (e.g., Lobell and Field, 2007; Schlenker and Roberts, 2009; Lobell et al., 2011; Hult-
gren et al., 2025). But then what will happen? One view emphasizes reallocation away
from agricultural production in heat-exposed regions, such that endogenous land use
changes mitigate the economic consequences of climate change and reduce deforestation
in the tropical regions that are most affected by global warming. An alternative possibility,
however, is that farmers double down in regions affected by climate change. That is, they
expand land under cultivation by deforesting more, even at lower productivity. In doing
so, they effectively increase–rather than decrease—their exposure to rising temperatures.
This idea is consistent with the original “Borlaug hypothesis,” which asserts that pro-
ductivity gains from technological improvements could reduce deforestation as farmers
grow more with less land (Borlaug, 2000). Applying this same logic to climate change,
productivity losses could increase deforestation as farmers can grow less with the land
that they have, and then seek out even more land on which to grow. In turn, increased
deforestation releases carbon emissions that accelerate climate change.

This paper empirically investigates the relationship between global warming and de-
forestation. We show that extreme heat increases deforestation by lowering agricultural
productivity and inducing cropland expansion at the forest frontier. Combining global
data on daily temperature realizations and deforestation, we find that exposure to killing
degree days persistently raises forest loss, especially in tropical regions, and can be ex-
plained largely by cropland expansion. These findings are corroborated by an analysis
of Brazilian agricultural census data, which shows that extreme heat causes decade-long
declines in agricultural productivity and cropland expansion, while generating little ad-
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justment along other margins.
Our estimates imply that extreme heat caused nearly 1.5 million hectares of forest loss

from 2005 to 2019 and could lead to an additional 28 million by 2100, amounting to over
26% of all deforestation and 48% of tropical deforestation that took place during the sample
period. These findings underscore the need to incorporate endogenous land-use responses
into models of climate damages and to align agricultural and conservation policies in a
warming world. Our results suggest that adverse productivity shocks will heighten local
incentives to clear land, challenging the more optimistic view that endogenous land use
changes will counteract the economic and environmental damages from climate change.
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Appendix

A Supplementary Figures and Tables

Figure A.1: Dynamic Effect of Extreme Heat on NDVI
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Notes: This plot reports coefficient estimates from equation (8) in which the outcome variable is the percent
change in NDVI, 100 · ((NDVIit − NDVIi,t−1)/NDVIit−1), and the sample is restricted to grid cells that
contain cropland. The dark blue coefficients are from estimates on the sample of grid cells inside the Arc
of Deforestation and the light blue coefficients are from estimates on the sample of grid cells outside of
the forest (see Section 3.3). Error bars are 95% confidence intervals based on standard errors clustered by
first-level administrative division (states within countries).
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Figure A.2: Extreme Heat Causes Deforestation: Levels Specification
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(a) Cell and Year Fixed Effects
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(b) Cell and Country-Year Fixed Effects

Notes: This figure plots coefficients from a variant of our dynamic event study (equation 8) estimated in
levels. That is, the outcome is the share of the grid cell not covered by trees (in units of percent of grid
cell; i.e., the variable of which Deforestationit, defined in equation 5, is the first difference) and the main
regressors are leads and lags of KDDit. Each sub-figure reports estimates on two different samples: the Arc
of Deforestation, in dark blue, and areas outside the forest, in light blue (see Section 3.3). In addition to the
leads and lags of killing degree days, the estimates in Figure A.2a include grid cell and year fixed effects
and the estimates in Figure A.2b include grid cell and country-by-year fixed effects. Error bars are 95%
confidence intervals based on standard errors clustered by first-level administrative division (states within
countries).
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Figure A.3: Extreme Heat Causes Deforestation: Outcome as log Deforestation
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(a) Cell and Year Fixed Effects
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(b) Cell and Country-Year Fixed Effects

Notes: This figure presents the dynamic effects of extreme heat exposure on deforestation, in a variant model
where the outcome variable is in logarithms. Each sub-figure reports estimate of this variant of equation
(8) on two different samples: the Arc of Deforestation, in dark blue, and areas outside the forest, in light
blue (see Section 3.3). In addition to the leads and lags of killing degree days, the estimates in Figure A.3a
include grid cell and year fixed effects and the estimates in Figure A.3b include grid cell and country-by-
year fixed effects. Error bars are 95% confidence intervals based on standard errors clustered by first-level
administrative division (states within countries).
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Figure A.4: The Persistence of KDD Shocks
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Notes: This figure presents estimates of the regression model,

KDDi,t+h − KDDi,t−1 = β0,h∆KDDit +

4∑
j=1

βj,h∆KDDi,t−j + γi + χc(i),t + ϵit

The regression sample is the Arc of Deforestation, as defined in Section 3.3, and the model includes grid-cell
and country-by-time fixed effects. Each point shows the estimate of β0,h, the marginal effect of ∆KDDit,
from a separate projection regression. Error bars are 95% confidence intervals based on standard errors
clustered by first-level administrative division (states within countries).
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Figure A.5: Testing for Pre-trends in the Decadal-Frequency Relationship between Ex-
treme Heat and Deforestation
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Notes: This figure reports estimates of the scatter plot corresponding to the following regression specification:

Deforestationi,2000s = β ·∆KDDi,2010s + εit

where the vertical axis is deforestation during the 2000s decade and the horizontal axis is the change in
KDDs during the 2010s decade. Standard errors are clustered by country.
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Figure A.6: Effects by Killing Degree Day Threshold
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(a) Contemporaneous Effect
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(b) Cumulative Effect

Notes: Panel (a) reports estimates of equation (7) in which killing degree days are constructed with different
values for T kill (see equation 6). The value of T kill in each specification is listed on the x-axis. Panel (b)
reports cumulative effects of the contemporaneous effect and four lags using estimates of (8). Error bars
are 95% confidence intervals based on standard errors clustered by first-level administrative division (states
within countries).
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Figure A.7: NDVI Effects by Forest Section
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Notes: This plot reports coefficient estimates from equation (8) in which the outcome variable is the percent
change in NDVI, 100 · ((NDVIit − NDVIi,t−1)/NDVIit−1). Each set of coefficients corresponds to estimates
from a different sample: the Arc of Deforestation (dark blue circles), the deep forest (green squares) and
non-forested area (light blue triangles), all of which are defined in Section 3.3. Error bars are 95% confidence
intervals based on standard errors clustered by first-level administrative division (states within countries).
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Figure A.8: The Effects of Extreme Heat on Deforestation by Forest Section
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Notes: This figure reports estimates of equation (7) restricting attention to different samples. We define “the
forest” as grid cells with more than 50% tree canopy cover. We separate the forest into layers based on the
distance (in grid cells) to the edge of the forest (columns 1-3), where the first two columns together constitute
our definition of the Arc of Deforestation and the third column is our definition of the Deep Forest. The
sample in the fourth bar is all non-forest grid cells (< 50% tree canopy cover). Error bars are 95% confidence
intervals based on standard errors clustered by first-level administrative division (states within countries).
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Figure A.9: Effects on Cropland Expansion in Brazil by Farm Size
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Notes: This figure reports estimates of equation (15) in which the outcome variable is (log of the) cropland
area in farms of different sizes, reported on the horizontal axis. All specifications include municipality and
decade fixed effects, and the sample is restricted to municipalities inside Brazil’s Arc of Deforestation. Error
bars are 95% confidence intervals based on standard errors clustered by municipality.
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Table A.1: Temperature Extremes Cause Deforestation: ESA Measurement
(1) (2) (3) (4) (5)

Arc of Deforestation Non-Forest
Panel A: Contemporaneous Effect

All All Tropics Non-Tropics All
∆KDD 0.00050 -0.00029 -0.00059 0.00007 0.00016∗∗∗

(0.00037) (0.00049) (0.00063) (0.00039) (0.00005)
Observations 48808 48497 20795 27684 186751
R-squared 0.191 0.454 0.480 0.400 0.294

Panel B: Cumulative Effect
Sum of ∆KDD 0.00592** 0.00753*** 0.00707** 0.00845** 0.00129***

(0.00268) (0.00200) (0.00232) (0.00333) (0.00029)
Observations 48808 48497 20795 27684 186751
R-squared 0.191 0.454 0.480 0.400 0.294
Grid-Cell Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes No No No No
Country-Year Fixed Effects No Yes Yes Yes Yes

Notes: This Table reports estimates of the effect of killing degree days on deforestation, where the latter is
measured using data from the European Space Agency land cover dataset (Zanaga et al., 2021) (compare
to the main estimates in Table 1). Panel A reports estimates of equation (7). Panel B reports estimates of
equation (8) for j between−L = 0 andK = 4, where “Sum of∆KDD” corresponds to the sum of coefficients:
β0+β1+β2+β3+β4. The set of included fixed effects is listed at the bottom of each column and the sample
is noted at the top. The Tropics are defined as all grid cells that fall between the Tropic of Cancer and the
Tropic of Capricorn, and the Non-Tropics as the complement. The Arc of Deforestation is defined in Section
3.3 to identify the edge of the world’s forests, and the Non-Forest denotes grid cells with less than 50% tree
cover. Standard errors, reported in parentheses, are clustered by first-level administrative division (states
within countries).
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Table A.2: Alternative Definitions of the Arc of Deforestation
(1) (2) (3) (4) (5)

Forest 50% Forest 30% Forest 80% Pre-period Ever in Arc
Panel A: In Arc of Deforestation

Sum of ∆ KDD 0.02331*** 0.01516*** 0.00942*** 0.02313*** 0.02298***
(0.00538) (0.00261) (0.00244) (0.00437) (0.00401)

Observations 36779 65215 8594 42084 44044
R-squared 0.496 0.432 0.631 0.410 0.418

Panel B: Not in Forest
Sum of ∆ KDD 0.00018 0.00006 0.00010 0.00004 0.00008

(0.00021) (0.00009) (0.00040) (0.00016) (0.00017)
Observations 190763 153037 222664 184170 188692
R-squared 0.441 0.419 0.461 0.338 0.354
Grid-Cell Fixed Effects Yes Yes Yes Yes Yes
Country-Year Fixed Effects Yes Yes Yes Yes Yes

Notes: This table reports the effects of extreme temperature changes on deforestation using different def-
initions of the Arc of Deforestation. Each panel reports estimates of equation (8) for j between −L = 0
and K = 4, where “Sum of ∆KDD” corresponds to the sum of coefficients: β0 + β1 + β2 + β3 + β4. Panel
A includes all grid cells in the Arc of Deforestation and Panel B includes all grid cells outside the forest.
Columns 1-3 define forested area as grid cells with 50%, 30%, and 80% forest cover respectively, and then
define the Arc of Deforestation with respect to these forest definitions. In column 4, we fix the Arc of
Deforestation at its pre-period level, and in column 5 we include a cell in the Arc of Deforestation if it is ever
included in the Arc of Deforestation using the column 1 (baseline) definition. Standard errors, reported in
parentheses, are clustered by first-level administrative division (states within countries).
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Table A.3: Extreme Heat Causes Deforestation at Different Grid-Cell Levels
(1) (2) (3) (4) (5)

Arc of Deforestation Non-Forest
All All Tropics Non-Tropics All

Panel A: 1 Degree Grid (Baseline)
Sum of ∆KDD 0.02534∗∗∗ 0.02331∗∗∗ 0.02634∗∗∗ 0.01083∗∗ 0.00018

(0.00496) (0.00538) (0.00653) (0.00419) (0.00021)
Observations 48875 48564 20826 27738 243756
R-squared 0.430 0.497 0.575 0.383 0.413

Panel B: 5 Degree Grid
Sum of ∆KDD 0.03257*** 0.03114*** 0.03247*** 0.02739 -0.00036

(0.00519) (0.00779) (0.00886) (0.02504) (0.00070)
Observations 2179 1958 1082 816 10,169
R-squared 0.761 0.882 0.888 0.757 0.708
Grid FE Yes Yes Yes Yes Yes
Year FE Yes No No No No
Country-Year FE No Yes Yes Yes Yes

Notes: This table reports the effects of extreme temperature changes on deforestation at two different levels
of geographic aggregation: 1=degree latitude-by-longitude grid cells in Panel A (baseline) and 5-degree
latitude-by-longitude grid cells in Panel B. Both panels report estimates of equation (8) for j between −L = 0
and K = 4, where “Sum of ∆KDD” corresponds to the sum of coefficients: β0 + β1 + β2 + β3 + β4. The
set of included fixed effects is listed at the bottom of each column and the sample is noted at the top. The
Tropics are defined as all grid cells that fall between the Tropic of Cancer and the Tropic of Capricorn, and
the Non-Tropics as the complement. The Arc of Deforestation is defined in Section 3.3 to identify the edge
of the world’s forests, and the Non-Forest denotes grid cells with less than 50% tree cover. Standard errors,
reported in parentheses, are clustered by first-level administrative division (states within countries).
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Table A.4: Temperature Extremes Cause Deforestation: All Forested Area
(1) (2) (3) (4)

Full Forest (> 50% Tree Cover)
All All Tropics Non-Tropics

Panel A: Contemporaneous Effect
∆KDD 0.00150∗∗ 0.00208∗∗∗ 0.00246∗∗∗ 0.00035

(0.00061) (0.00062) (0.00075) (0.00059)
Observations 55671 55360 26825 28535
R-squared 0.441 0.502 0.589 0.377

Panel B: Cumulative Effects
Sum of ∆KDD 0.02301*** 0.02033*** 0.02183*** 0.01096***

(0.00369) (0.00405) (0.00474) (0.00419)
Observations 55671 55360 26825 28535
R-squared 0.441 0.502 0.589 0.377
Grid-Cell Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes No No No
Country-Year Fixed Effects No Yes Yes Yes

Notes: This table reports the effects of extreme temperature changes on deforestation in the all of the world’s
forest (defined as grid cells with > 50% tree cover, in contrast to our baseline analysis which focuses on
the Arc of Deforestation (see Table 1). Panel A reports estimates of equation (7). Panel B reports estimates
of equation (8) for j between −L = 0 and K = 4, where “Sum of ∆KDD” corresponds to the sum of
coefficients: β0 + β1 + β2 + β3 + β4. The set of included fixed effects is listed at the bottom of each column
and the sample is noted at the top. The Tropicsare defined as all grid cells that fall between the Tropic of
Cancer and the Tropic of Capricorn, and the Non-Tropics as the complement. Standard errors, reported in
parentheses, are clustered by first-level administrative division (states within countries).
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Table A.5: Temperature Extremes Causes Deforestation: Place-Specific Linear Trends
(1) (2) (3) (4) (5)

Arc of Deforestation Non-Forest
All All Tropics Non-Tropics All

Panel A: Contemporaneous Effect
∆KDD 0.00175∗∗∗ 0.00243∗∗∗ 0.00322∗∗∗ 0.00016 -0.00000

(0.00065) (0.00071) (0.00080) (0.00056) (0.00002)
Observations 48875 48564 20826 27738 243756
R-squared 0.529 0.582 0.662 0.468 0.529

Panel B: Cumulative Effect
Sum of ∆KDD 0.02751*** 0.02536*** 0.02927*** 0.00460 0.00021

(0.00615) (0.00616) (0.00676) (0.00383) (0.00019)
Observations 48875 48564 20826 27738 243756
R-squared 0.529 0.582 0.662 0.468 0.529
Grid-Cell Fixed Effects Yes Yes Yes Yes Yes
Grid-Cell Linear Trends Yes Yes Yes Yes Yes
Year Fixed Effects Yes No No No No
Country-Year Fixed Effects No Yes Yes Yes Yes

Notes: This table reports the effects of extreme temperature changes on deforestation from regression models
with place-specific linear trends: that is, for each grid cell i, a regressor of the form τi · t (compare to the
baseline in Table 1). Panel A reports estimates of equation (7) augmented with place-specific linear trends.
Panel B reports estimates of equation (8) augmented with place-specific linear trends, for j between −L = 0
and K = 4, where “Sum of ∆KDD” corresponds to the sum of coefficients: β0 + β1 + β2 + β3 + β4. The
set of included fixed effects is listed at the bottom of each column and the sample is noted at the top. The
Tropics are defined as all grid cells that fall between the Tropic of Cancer and the Tropic of Capricorn, and
the Non-Tropics as the complement. The Arc of Deforestation is defined in Section 3.3 to identify the edge
of the world’s forests, and the Non-Forest denotes grid cells with less than 50% tree cover. Standard errors,
reported in parentheses, are clustered by first-level administrative division (states within countries).
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Table A.6: Extreme Heat Causes Deforestation Controlling for Upwind Deforestation
(1) (2) (3) (4) (5)

Arc of Deforestation Non-Forest
All All Tropics Non-Tropics All

Panel A: Contemporaneous Effect
∆ KDD 0.00240∗∗∗ 0.00310∗∗∗ 0.00414∗∗∗ 0.00036 -0.00000

(0.00073) (0.00081) (0.00092) (0.00062) (0.00002)
Observations 48875 48564 20826 27738 243756
R-squared 0.446 0.508 0.588 0.392 0.418

Panel B: Cumulative Effect
Sum of ∆KDD 0.02220*** 0.02120*** 0.02459*** 0.01031** 0.00010

(0.00469) (0.00529) (0.00645) (0.00398) (0.00018)
Observations 48875 48564 20826 27738 243756
R-squared 0.446 0.508 0.588 0.392 0.418
Grid-Cell Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes No No No No
Country-Year Fixed Effects No Yes Yes Yes Yes
Upwind Def. Control Yes Yes Yes Yes Yes

Notes: This table reports the effects of extreme temperature changes on deforestation augmented with a
control variable measuring upwind deforestation (see Appendix C.1). Panel A reports estimates of equation
(7). Panel B reports estimates of equation (8) for j between −L = 0 and K = 4, where “Sum of ∆KDD”
corresponds to the sum of coefficients: β0 + β1 + β2 + β3 + β4. The set of included fixed effects is listed at
the bottom of each column and the sample is noted at the top. The Tropics are defined as all grid cells that
fall between the Tropic of Cancer and the Tropic of Capricorn, and the Non-Tropics as the complement. The
Arc of Deforestation is defined in Section 3.3 to identify the edge of the world’s forests, and the Non-Forest
denotes grid cells with less than 50% tree cover. Standard errors, reported in parentheses, are clustered by
first-level administrative division (states within countries).
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B Dynamic Model

We extend the static model of Section 2 to incorporate multiple periods and adjustment
costs in land clearing. Because of adjustment costs, deforestation responds gradually to
changes in productivity, prices, and costs, as is consistent with our empirical results in
Figures 2 and 7 of Section 4.

Set-up. Time is discrete and infinite, indexed by t ∈ N. We focus on the problem of a
single farmer in location i. This farmer chooses the stock of land used in each period,
xit ∈ R+. As in Section 2, we interpret all unused land as “forest,” such that increases in
land use correspond to deforestation. The farmer’s per-period flow utility, as a function
of the current and previous stock, is

π(xit, xi,t−1) = pitaitxit −
cit
2
x2
it −

γit
2
(xit − xi,t−1)

2 (17)

As in our baseline model, pit ∈ R+ is the (shadow) price of agricultural output, ait ∈ R+

is physical productivity, and cit ∈ R+ is the time-varying opportunity cost of deploying
agricultural land. The final term is new to the dynamic model, and it represents adjustment
costs, scaled by parameter γit ∈ R+. This term captures the costs of deploying technology
to clear the forest, including cutting trees, setting fires, and clearing the ground. The
first difference of land use corresponds to deforestation: dit = xit − xi,t−1. For simplicity,
adjustment costs are symmetric for deforestation (dit > 0) and afforestation (dit < 0).

At time t = 0, the farmer takes as given an initial land use xi,−1 and the sequence of
parameters (pit, ait, cit, γit)

∞
t=0. They choose a path of land use to maximize the present

discounted value of profits:

max
(xit)∞t=0

{
∞∑
t=0

δtπ(xit, xi,t−1)

}
given xi,−1 (18)

where δ ∈ (0, 1) is the discount factor.

Land-use Dynamics. Taking the first-order condition of equation (18) with respect to
xit, for any t ≥ 0, yields the difference equation

pitait − citxit − γit(xit − xi,t−1) + δγi,t+1(xi,t+1 − xit) = 0 (19)

This expression nests the first-order condition of the static problem when γit = 0 for all
t. Otherwise, the additional γit terms reflect adjustment costs: using more land today
is “cheaper” if more land was used yesterday and if more land is planned to be used
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tomorrow. Given the appropriate terminal condition, this difference equation can be
solved forward to determine the optimal path of land use and deforestation.

To characterize these dynamics, we consider a stationary environment in which pi, ai,
ci, and γi are constant over time. Substituting in equation (19):

piai − cixit − γi(xit − xi,t−1) + δγi(xi,t+1 − xit) = 0 (20)

In steady state, xit = x∗
i for all t ≥ 0. Substituting and solving for x∗

i , we see that steady-
state land use coincides with the prediction from the static model.

x∗
i =

piai
ci

(21)

Furthermore, we can rewrite equation (20) in terms of deviations x̂it := xit − x∗
i from the

steady state:

x̂i,t+1 =

(
c

δγ
+

1

δ
+ 1

)
x̂it −

1

δ
x̂i,t−1 (22)

We guess and verify a solution in which x̂it = λt(xi,−1 − x∗
i ) for all t ≥ 0. This solution de-

scribes geometric convergence to the steady state, with the speed of adjustment governed
by λ and the magnitude of the transition determined by the initial deviation xi,−1 − x∗

i .
Substituting the guess in the above expression for t > 0 and dividing by λt−1(xi,−1 − x∗

i )

gives:

λ2 =

(
c

δγ
+

1

δ
+ 1

)
λ− 1

δ
(23)

This quadratic equation has one root that satisfies λ ∈ (0, 1).

λ =
c+ (1 + δ)γ −

√
(c+ (1 + δ)γ)2 − 4δγ2

2δγ
(24)

Hence, the dynamics of xit are saddle-path stable.
The full dynamics of land use around the steady state are given by our solution

xit = x∗
i + λt (xi,−1 − x∗

i ) for t ≥ 0 (25)

where λ is defined in equation (24). Deforestation dir = xir − xi,r−1 is

dit = λr(λ−1 − 1) (x∗
i − xi,−1) for t ≥ 0 (26)

Thus, the sign of deforestation depends on the sign of x∗
i − xi,−1. If initial land use is
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less than the steady state, then the farmer deforests in every period t ≥ 0. Moreover, for
λ ∈ (0, 1), λt converges to zero and |dit| decreases over time. The farmer deforests (or
aforests) most at time 0 and less so at time t > 0 as land use transitions to the steady state.

Comparative Statics. The parameter γ, which controls adjustment costs, has no effect
on the steady-state level of land use. It affects only the transition dynamics, as higher
adjustment costs (higher γ) slow the transition to the steady state (higher λ):

∂λ

∂γ
=

λ

γ
√
(c+ (1 + δ)γ)2 − 4δγ2

> 0 (27)

The parameter δ, which controls discounting, similarly affects only the transition path.
More patience (higher δ) speeds the transition to the steady state (lower λ):

∂λ

∂δ
= −λ− 1

2δ

(
c+ (1 + δ)γ√

(c+ (1 + δ)γ)2 − 4δγ2
− 1

)
< 0 (28)

The parameters ai and pi affect the steady state, as seen in equation 21, but not the
transition dynamics, as summarized by λ in equation 24. Their effect on the steady state
is as in the main analysis: higher productivity or prices raise land use. The parameter c
affects the steady state as in the static analysis, as higher costs lead to less land use. It also
affects transition dynamics, as higher costs lead to slower transitions (higher λ):

∂λ

∂c
=

1

2δγ

(
c+ (1 + δ)γ√

(c+ (1 + δ)γ)2 − 4δγ2
− 1

)
> 0 (29)

Mapped back to our interpretation of parameters (see Section 2), the productivity and
price channels affect the long-run level of forest cover and hence cumulative deforestation
in response to a shock, while the cost channel affects both this cumulative level as well as
the pace of deforestation. In particular, a shock that decreases the cost of deforestation
both increases the steady-state level of land use and leads to an accelerated transition.

From Theory to Empirics. The dynamic event-study model of equation (8), i.e.,

Deforestationit =
K∑

j=−L

βj∆KDDi,t−j + γi + χc(i),t + ϵit (30)
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can be used to determine the empirical analogue of a sudden and permanent jump in
killing degree days. In particular, consider the case in which

∆KDDis =

∆ > 0 if s = t

0 otherwise
(31)

The effect on deforestation according to the model of equation (8), holding fixed γi and
(χc(i),s, ϵis) for all s, is

Deforestationis =

βs−t∆ if − L ≤ s− t ≤ K

0 otherwise
(32)

Thus, the time path of deforestation visually resembles the sequence of coefficients plotted
in Figure 2, where the horizontal access increments from t− 4 to t+ 4.

The experiment we consider in the model is an unanticipated, permanent change
to parameters that increases steady-state land use. This corresponds to the transition
dynamics of equation (26), where x∗

i is the new steady state and xi,−1 < x∗
i is the original

steady state. This pattern of gradual deforestation in response to the shock is qualitatively
consistent with our empirical estimates.

C Data

C.1 Upwind Deforestation Exposure

We calculate upwind deforestation exposure following Araujo et al. (2023). In Table
A.6, we present estimates of our main specification measuring the effects of temperature
extremes on deforestation after controlling for this measure.

We measure wind patterns using the monthly wind fields produced as part of the
ERA5 dataset (Muñoz Sabater et al., 2021) and deforestation, as in our main analysis, with
the dataset of Hansen et al. (2013). Our objective is to measure, for every 1◦×1◦ grid cell,
the share of deforestation in upwind areas to which it is exposed.

We first compute wind direction θ (in degrees) and speed s ( in meters per second) at
each vertex of our dataset (i.e., each of the corners of the grid cells), indexed by v, in each
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month, indexed by calendar month m and year t:

θv,m,t =
(
arctan 2(v10o(v),m,t, u10o(v),m,t)

)
mod360◦, so(v),m,t =

√
u102o(v),m,t + v102o(v),m,t

(33)
where o(v) denotes the origin grid cell; arctan 2 denotes the two-argument arctangent (i.e.,
arctan 2(y, x) denotes the angle from the x-axis to the coordinate (x, y)); and v10 and u10

are the northern and eastern components of the 10-meter wind direction.
We compute exposure based on 24 hours of wind travel. The great-circle distance

covered in this time is Lv,m,t = sv,m,t × 24 × 3600, since speed is computed in meters per
second. We project winds emanating from each vertex v at the angle θv,m,t, and we denote
the resulting line segment as ℓv,m,t.

We next intersect each wind exposure segment ℓv,m,t with every grid cell polygon c ∈ G
to obtain the set of intersected polygons. We let the indicator Iv,c,m,t ∈ {0, 1} denote
whether grid cell polygon c ∈ G intersects with the segment ℓv,m,t.

We next calculate exposure. For origin cell o and target cell c, the fraction of vertices
whose monthly trajectories reach c is

ωo,c,m,t =
1

4

∑
v∈Vo

Iv,c,m,t. (34)

where Vo is the set of four vertices of the origin cell. Then, summing over all 12 months
per year and origin grid cells, we calculate exposure to deforestation using these weights:

Ec,t =
∑
m

∑
o∈G

ωo,c,m,tDo,t (35)

Finally we rescale within each year to obtain a unit-free index:

Ẽc,t =
Ec,t

max
c′∈G

Ec′,t
∈ [0, 1] (36)

This is our final measure of upwind exposure.

C.2 Future Temperature Projections

We construct future temperature projections using an ensemble of global climate models
from the Coupled Model Intercomparison Project Phase 6 (CMIP6). We use the following
CMIP6 climate models in our analysis: CMCC-ESM2, EC-Earth3-Veg-LR, EC-Earth3,
GFDL-CM4, GFDL-CM4_gr2, GFDL-ESM4, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR,
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KACE-1-0-G, KIOST-ESM, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and MRI-ESM2-
0. These models span all major CMIP6 modeling centers and represent a broad range
of structural assumptions regarding atmospheric physics, ocean dynamics, and land–
atmosphere interactions. In our analysis, we assign each model an equal weight and
compute the simple ensemble mean across all available models.
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