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Sea Level Rise and Urban Inequality†

By Allan Hsiao*

Sea level rise threatens coastal cities around 
the world. Will it exacerbate inequality in these 
already unequal places? The rich may adapt by 
moving to higher ground, bidding up prices and 
pushing the poor elsewhere. I study the distribu-
tional consequences of this spatial sorting with 
a simple quantitative model and granular data 
from Jakarta, a flood-prone megacity of 32 mil-
lion. I find that sea level rise will double inequal-
ity in flood exposure.

I.  Model

Individuals ​i​ of wage groups ​j​ choose loca-
tions ​k​ to maximize residential utility.

	​​ max​ 
k
​ ​​ {​v​jk​​ + ​ε​ijk​​}​​.

Residential utility includes representative utility ​​
v​jk​​​ and logit taste shocks ​​ε​ijk​​​. Locations give rep-
resentative utility

(1)	​​ v​jk​​  = ​ α​j​​ ​p​k​​ + β  ​f​k​​ + ​x​k​​ γ + ​δ​jk​​​

for housing prices ​​p​k​​​, flooding ​​f​k​​​, observed ame-
nities ​​x​k​​​, and unobserved amenities ​​δ​jk​​​. Price 
elasticities ​​α​j​​​ can differ by wage group. Logit 
shocks imply location choice probabilities

(2)	​​ π​ijk​​  = ​ π​jk​​  = ​   ​e​​ ​v​jk​​​ _____ 
​∑ ℓ​ 

 
 ​​ ​e​​ ​v​jℓ​​​

 ​.​

Individuals within wage groups have common 
wages and thus common choice probabilities.

In equilibrium, prices ​p  = ​ {​p​k​​}​​ clear hous-
ing markets in each location.

(3)	​​ n​ k​ 
D​​(​p​​ ∗​)​  = ​ n​ k​ 

S​​(​p​​ ∗​)​, ∀ k​.

Housing demand is

	​​ n​ k​ 
D​  = ​ ∑ 

i
​ 
 

 ​​ ​ π​ijk​​,​

and it depends on prices through equations 
(1) and (2). Equation (2) captures spatial 
interdependence, as prices in each location 
affect choice probabilities in every location. 
Housing supply is

	​​ n​ k​ 
S​  = ​​ n –​​k​​.​

I consider fixed capacity ​​​n –​​k​​​, but a richer model 
would allow supply to respond more elastically.

Sorting arises from wage-specific price elas-
ticities and endogenous prices. High-wage indi-
viduals demand flood safety and bid up prices 
in flood-safe locations. Low-wage individuals 
also demand flood safety, but they may prefer 
the lower prices of flood-prone locations. This 
sorting creates inequality. Sea level rise then 
exacerbates inequality, as greater coastal flood-
ing increases demand for flood safety and raises 
prices in flood-safe locations. The rich crowd 
out the poor in pursuit of higher ground.

II.  Data

I compile fine-grained spatial data for the city 
of Jakarta. I obtain populations, housing prices, 
flooding, and geographic variables by 300 meter 
(m) cell from Hsiao (2023). Populations for 
2015 are from the Global Human Settlement 
Layer, and housing prices for 2015 are con-
structed from transaction records and online 
listings. Flooding for 2013 to 2020 is from city 
government data. I compute flood frequency 
as the average number of flood days per year. 
Geographic variables include coordinates, 
administrative regions, elevation, distance to the 
coast, and distance to the nearest river.

To study inequality, I construct 2015 popula-
tions by wage group for each 300 m cell. I begin 
with full count population census data from 
2010, which record household addresses. I geo-
code addresses to cells by extracting information  
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on administrative blocks (rukun tetangga), 
street names, and street numbers. Blocks are 
very granular, with average populations of 350 
people, and enable the direct geocoding of most 
addresses. The geocoded data cover 84 percent 
of 300 m cells. I define high- and low-wage 
groups ​j  ∈ ​ {H, L}​​ by education, as the cen-
sus data do not directly record wages. I assign 
individuals with postsecondary education to 
the high-wage group and those without to the 
low-wage group. I then compute group shares 
by cell, and I multiply by 2015 populations to 
obtain populations by group-cell.

Table 1 evaluates education as a proxy mea-
sure of wages. From the 2011, 2012, 2013, and 
2014 waves of the National Socioeconomic 
Survey (SUSENAS), I construct a sample of 
26,401 individuals for Jakarta. By comparison, 
the census data record 9.6 million individuals. 
The SUSENAS data can be geocoded to the dis-
trict level, while the census data contain house-
hold addresses. But the SUSENAS data record 
wages, defined as net monthly income from 
an individual’s main job. The table shows that 
wages increase monotonically with education, 
and I take my high-wage cutoff from the large 
increase at college education, which includes all 
forms of postsecondary schooling. SUSENAS 
wage earners are more highly educated than the 
broader population, but estimation and counter-
factuals avoid sample selection by relying solely 
on census data.

III.  Estimation

I estimate the model to recover parameters ​​α​j​​​, ​
β​, ​γ​, and ​​δ​jk​​​. The estimated model delivers equi-
librium prices and choice probabilities for any 
given pattern of flooding. Inverting equation (2),

	​ ln ​π​jk​​ − ln ​π​j  0​​  = ​ v​jk​​ − ​v​j  0​​​

for reference location ​k  =  0​. Substituting equa-
tion (1), I obtain a linear estimating equation.

(4)	​ Δ  ln ​π​jk​​  = ​ α​j​​ Δ ​p​k​​ + β Δ   ​f​k​​

	 + Δ ​x​k​​ γ + Δ ​δ​jk​​​

for ​Δ ​y​jk​​  = ​ y​jk​​ − ​y​j  0​​​ and ​Δ ​y​k​​  =  ​y​k​​ − ​y​0​​​.
I treat 300 m cells as locations. For the depen-

dent variable, I compute logged choice probabil-
ities with ​​π​jk​​  = ​ n​jk​​/​∑ ℓ​ 

 
 ​​ ​n​jℓ​​​ and populations ​​n​jk​​​, 

which I observe by wage group and cell. I drop 
populations of less than ten individuals, which 
account for 1 percent of group-cell observations, 
as logged probabilities exacerbate measurement 
noise for small populations. For the independent 
variables, I observe housing prices ​​p​k​​​, flooding ​​f​k​​​, 
and amenities ​​x​k​​​, which include distance to the 
coast, distance to the nearest river, elevation, and 
district fixed effects. These observed amenities 
act as controls, while unobserved amenities ​​δ​jk​​​ 
represent structural errors.

The identification problem is that prices are 
correlated with unobserved amenities. The rea-
son is sorting: high-amenity locations attract 
high-wage individuals that bid up prices. I thus 
require a price instrument. Typical candidates 
for demand estimation include cost shifters, 
prices in other markets, characteristics of com-
peting products, and demographics in other 
markets (Berry and  Haile 2021). My context 
calls for housing cost shifters, or perhaps hous-
ing prices and resident demographics in nearby 
locations. I choose ruggedness as a cost shifter, 
as construction must flatten rugged terrain. The 
exclusion restriction argument is that Jakarta’s 
modest ruggedness does not impede transporta-
tion and thus is less salient to residents.

I take flooding as uncorrelated with ameni-
ties. In practice, coastal areas may enjoy pleas-
ant coastal views despite elevated flood risk. 

Table 1—Wages by Education

None Primary Middle High College

Mean monthly wages (2015 US dollars) 131 149 182 262 624
Proportion of SUSENAS sample (percent) 5 15 17 42 21
Proportion of census sample (percent) 16 18 19 35 12

Notes: Each column corresponds to a given level of educational attainment. Middle is lower secondary schooling, and high 
is upper secondary schooling, inclusive of vocational training. College includes all forms of postsecondary schooling. Mean 
monthly wages are from the 2011, 2012, 2013, and 2014 waves of the SUSENAS. These wages measure monthly net income, 
both money and goods, from an individual’s main job. The second row reports educational composition in this sample. For 
comparison, the third row reports educational composition in the geocoded sample of the 2010 population census.
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Conversely, flood-prone areas may suffer from 
disinvestment in public amenities. Controls 
help to mitigate this concern. Coastal and river 
distances control for water amenities, elevation 
captures pleasant views, and district fixed effects 
absorb unobserved heterogeneity. At the same 
time, I find that omitting these controls has lim-
ited impact on the estimated flooding coefficient.

I estimate equation (4) by linear IV regres-
sion. First, I construct the differenced vari-
ables and a group indicator. I choose a 
reference location ​k  =  0​, and I compute ​
Δ  ln ​π​jk​​​ for each wage group. Regressors ​ 
Δ​​​p​k​​​, ​Δ  ​​​f​k​​​, and ​Δ  ​​​x​k​​​ take the same reference loca-
tion but do not vary by wage group. Second, I 
regress choice probabilities on price-group inter-
actions, flooding, observed amenities, and the 
group indicator, instrumenting for price-group 
interactions with ruggedness-group interactions. 
This regression yields ​​​α ˆ ​​j​​​, ​​β ˆ ​​, and ​​γ ˆ ​​ as coefficients 
and ​Δ ​​δ ˆ ​​jk​​​ as residuals. Regressing on log prices 
allows me to interpret ​​α​j​​​ as elasticities, while 
regressing on prices allows me to use ​​α​j​​​ to mon-
etize welfare. I capture ​​δ​jk​​​ relative to ​​δ​j  0​​​ but not 
in levels, noting that the group indicator allows ​​
δ​j  0​​​ to vary freely across groups.

Table 2 presents the estimated parameters. IV 
estimates show that high prices and severe flood-
ing each reduce residential demand. I regress on 
log prices and find that both low- and high-wage 
groups have elastic demand. But the low-wage 
group is 66 percent more price sensitive than the 
high-wage group, and this difference is statisti-
cally significant. Ruggedness serves as a strong 
instrument, increasing prices in the first stage 
with an F-statistic of 15.50.

OLS estimates ignore price endogene-
ity. Because of sorting, locations with high 
unobserved amenities also have high prices. 
Individuals may therefore choose these locations 
despite their high prices. Ignoring this correlation 
leads to the false conclusion that individuals are 
not price sensitive. Indeed, the OLS estimates 
exhibit strong upward bias, with inelastic demand 
for the low-wage group and a positive demand 
elasticity for the high-wage group.

IV.  Sea Level Rise

Will sea level rise exacerbate inequality? I 
consider relative sea level rise of 1, 3, and 5 m 
for Jakarta. Government plans anticipate 3 to 
5 m by 2050, citing annual rates of 8 millime-
ters (mm) for global mean sea level rise and 7 
to 14 centimeters (cm) for local land subsidence 
(NCICD 2014). The global rate is consistent 
with scientific estimates, as surveyed by Depsky 
et al. (2023). The local rates are consistent with 
older estimates of land subsidence from 1982 to 
2010 (Abidin et al. 2011), although newer esti-
mates for 2014 to 2020 are more modest (Tay 
et  al. 2022). Relative sea level rise combines 
both rates and captures the city’s fast march 
toward inundation.

I project flooding under sea level rise with 
a simple, elevation-based hydrological model 
for Jakarta. For sea level rise of 1, 3, and 5 m, 
I identify the 1.4 percent, 6.4 percent, and 20.5 
percent of 300 m cells in my sample that fall 
below sea level. I assign the maximum flooding 
observed in the data—24.5 flood days per year—
to these inundated cells, while other cells retain 

Table 2—Demand Estimation

IV OLS

Estimate SE Estimate SE

Log price, low wages −2.63 (0.45) −0.15 (0.04)
Log price, high wages −1.58 (0.61) 0.28 (0.09)
Flooding −0.09 (0.04) −0.05 (0.02)

Observations 10,710 10,710
p-value, low  =  high 0.01 0.00
F-statistic 15.50

Notes: Each pair of columns is one regression, and each observation is a group-cell with low- and high-wage groups and 300 
m cells. Prices are 2015 property prices per square meter, measured in units of IDR 1 million. The IV specification instruments 
for log prices with ruggedness. I proxy for wages with education: the high-wage group is those with postsecondary education, 
and the low-wage group is those without. Flooding is the average number of flood days per year, as observed from 2013 to 
2020. Controls include distance to the coast, distance to the nearest river, elevation, and district fixed effects. I report p-values 
for the null hypothesis that low- and high-wage price elasticities are equal.
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their observed flooding values. These projec-
tions capture the spatially heterogeneous impacts 
of sea level rise but are likely underestimates. 
Inundation is certainly worse than 24.5 flood days 
per year, and I make no adjustment to flooding 
for cells that fall near sea level but not below. In 
ignoring heterogeneity in land subsidence, I also 
understate inundation in the fast-subsiding north. 
At the same time, I assume no adaptation via gov-
ernment intervention, which can reduce damages. 
Hsiao (2023) focuses on this government inter-
vention and its associated challenges.

I calculate flood exposure by wage group ​j​ as 
the average faced by individuals in each group.

(5)	​​ F​j​​  = ​ ∑ 
k
​ 

 

 ​​  ​ f​k​​ ​π​jk​​​

for flooding ​​f​k​​​​​ and choice probabilities ​​π​jk​​​. 
For current exposure, I compute this measure 
directly from data on current flooding and 
choice probabilities. For projected exposure, 
I use the hydrological model to generate pro-
jected flooding, then solve the sorting model for 
counterfactual choice probabilities.

I solve the conditions given by equation (3) 
to obtain equilibrium housing prices. These 
conditions form a system of nonlinear equa-
tions, which can be difficult to solve with 
many locations. I compute the (log) prices 
needed to compensate for projected flooding 
in each location as ​ ​p​ k​ ′ ​  =  ​ p​k​​ − β​( ​f​ k​   ′​ − ​f​k​​)​/​α – ​​  

for average price coefficient ​​α – ​​, and I use these 
nonequilibrium prices as a starting point. I also 
normalize the price to zero in reference location ​
k  =  0​. Uniform price increases do not affect 
choice probabilities (absent an outside option), 
and so normalizing helps to avoid multiple 
solutions. Solving the system gives equilibrium 
prices, and choice probabilities follow by equa-
tion (2).

I focus on the impacts of flooding via hous-
ing prices and sorting. In solving the model, I fix 
wage groups ​j​, amenities ​​x​k​​​ and ​​δ​jk​​​, and hous-
ing supply ​​​n –​​k​​​ at current levels. It is equivalent to 
assume that amenities change uniformly across 
space, that population grows proportionally 
across wage groups, and that housing supply 
grows proportionally across locations.

Table 3 presents the results. At current levels, 
flood exposure is already high and unequal. Both 
groups experience an average of one flood day 
every one to two years. But low-wage individu-
als are more vulnerable, as low-wage exposure is 
140 percent of high-wage exposure. At projected 
levels, flood exposure increases substantially. 
Low- and high-wage exposure reaches 5.77 and 
2.20 flood days per year with sea level rise of 5 m 
relative to 0.88 and 0.62 today. Sea level rise also 
exacerbates inequality. For sea level rise of 1, 3, 
and 5 m, low-wage exposure is 152 percent, 209 
percent, and 262 percent of high-wage exposure 
relative to 140 percent today. Inequality nearly 
doubles in the 5 m scenario.

Table 3—Inequality with Sea Level Rise

Flooding Prices

Low wages High wages ​​ L _ H ​​ ​L − H​

Current 0.88 0.62 1.40 −0.10

Projected
  1 m sea level rise 1.03 0.68 1.52 −0.10
  3 m sea level rise 2.00 0.96 2.09 −0.13
  5 m sea level rise 5.77 2.20 2.62 −0.22

Projected, no sorting
  1 m sea level rise 1.02 0.73 1.39 −0.10
  3 m sea level rise 1.93 1.32 1.47 −0.11
  5 m sea level rise 5.47 3.72 1.47 −0.15

Notes: The first row computes flood exposure and price incidence from observed data. The first and second columns are flood 
exposure for the low- and high-wage groups. The third column is the ratio of flood exposure, and the fourth column is the dif-
ference in price incidence. The second panel solves the model for equilibrium prices and choice probabilities under projected 
flooding from sea level rise. Each row is one counterfactual. Prices are normalized against reference location ​k  =  0​ and can 
only be interpreted in changes. Flooding can be interpreted in levels. The third panel suppresses the impact of sorting. It com-
putes flood exposure and price incidence with projected flooding and counterfactual prices, but it imposes current choice prob-
abilities for each.
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I calculate price incidence by wage group ​j​ as 
an average analogous to equation (5).

(6)	​​ P​j​​  = ​ ∑ 
k
​ 

 

 ​​ ​ p​k​​ ​π​jk​​​,

for (log) prices ​​p​k​​​ and choice probabilities ​​
π​jk​​​. This measure cannot be interpreted in lev-
els except when prices are directly observed, 
as I normalize prices in solving the model. 
Differencing the low- and high-wage measures 
eliminates price normalizations and allows me 
to compare across scenarios.

Table  3 presents these differenced measures. 
Sea level rise widens the gap between groups but 
now to the benefit of low-wage individuals. The 
difference of −0.10 today captures lower prices 
for the low-wage group, and this difference grows 
to −0.13 and −0.22 under sea level rise of 3 and 
5 m. Lower prices compensate for higher flood 
exposure, potentially narrowing the welfare gap. 
The change from 3 to 5 m is especially large, 
as the inundated area expands from 6.4 percent 
to 20.5 percent of cells. Large demand shocks 
induce large price effects.

Lastly, I isolate the role of sorting by condi-
tioning on current choice probabilities. That is, 
I evaluate equation (5) with projected flooding 
and equation (6) with counterfactual prices—
but each with current choice probabilities 
instead of counterfactual choice probabilities. 
For flood exposure, this exercise captures the 
direct impacts of increased flooding. It offers a 
simplified evaluation of flood risk that depends 
only on flood projections without the need to 
estimate and solve a sorting model. But in doing 
so, it assumes immobility and ignores equilib-
rium responses to sea level rise.

Table  3 shows that inequality is greatly 
attenuated without sorting. Inequality in flood 
exposure is stable across scenarios. Low-wage 
exposure is 139 to 147 percent of high-wage 
exposure under sea level rise relative to 140 per-
cent today. Inequality in price incidence is sim-
ilarly attenuated. Thus, it is sorting that drives 
the impact of sea level rise on inequality. For 
sea level rise of 5 m, sorting reduces high-wage 
exposure to 2.20 flood days per year relative to 
3.72 without sorting, as high-wage individuals 
seek out flood-safe areas. It also raises low-wage 

flood exposure to 5.77 flood days relative to 5.47 
without sorting, as higher prices push low-wage 
individuals toward flood-prone areas.

V.  Conclusion

This paper studies the distributional conse-
quences of sea level rise. I use a simple empirical 
model to show that sea level rise will exacerbate 
inequality in flood exposure. Sorting drives 
this inequality: high-wage individuals seek out 
flood-safe areas, bidding up prices and pushing 
low-wage individuals out. For Jakarta, I find that 
relative sea level rise of 5 m will nearly double 
inequality. Policymakers must navigate these 
distributional effects as sea level rise reshapes 
our urban landscapes.
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